
Final exam review
Math 265
Fall 2007

This exam will be cumulative. Consult the review sheets for the midterms
for reviews of Chapters 12–15.

§16.1. Vector Fields.

A vector field on R2 is a function F from R2 to V2.
Input: a point (x, y)
Output: a vector F(x, y) = P (x, y)i + Q(x, y)j.
A graph of F can be obtained by plotting several vectors F(x, y) with initial
point (x, y).
A vector field on R3 is a function F from R3 to V3.
Input: a point (x, y, z)
Output: a vector F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k.
§16.2. Line Integrals.

Let C be a smooth curve in R2, parametrized by the vector-valued function
r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b. Let f be a continuous real-valued function of
two variables.
Line integral of f with respect to arc length:∫

C
f(x, y) ds =

∫ b

t=a
f(x(t), y(t))

√
[x′(t)]2 + [y′(t)]2 dt

Line integral of f with respect to x:∫
C

f(x, y) dx =
∫ b

t=a
f(x(t), y(t))x′(t) dt

Line integral of f with respect to y:∫
C

f(x, y) dy =
∫ b

t=a
f(x(t), y(t))y′(t) dt

If F(x, y) = 〈P (x, y), Q(x, y)〉 is a continuous vector field on R2, then∫
C

F · dr =
∫

C
[P (x, y) dx + Q(x, y) dy]

=
∫ b

t=a
[P (x(t), y(t))x′(t) + Q(x(t), y(t))y′(t)] dt.
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Let C be a smooth curve in R3, parametrized by the vector-valued function
r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b. Let f be a continuous real-valued function
of three variables.
Line integral of f with respect to arc length:∫

C
f(x, y, z) ds =

∫ b

t=a
f(x(t), y(t), z(t))

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt

Line integral of f with respect to x:∫
C

f(x, y, z) dx =
∫ b

t=a
f(x(t), y(t), z(t))x′(t) dt

Line integral of f with respect to y:∫
C

f(x, y, z) dy =
∫ b

t=a
f(x(t), y(t), z(t))y′(t) dt

Line integral of f with respect to z:∫
C

f(x, y, z) dy =
∫ b

t=a
f(x(t), y(t), z(t))z′(t) dt

If F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 is a continuous vector field
on R3, then∫

C
F · dr =

∫
C

[P (x, y, z) dx + Q(x, y, z) + R(x, y, z) dz]

=
∫ b

t=a
[P (x(t), y(t), z(t))x′(t) + Q(x(t), y(t), z(t))y′(t)

+ R(x(t), y(t), z(t))z′(t)] dt.

§16.3. The Fundamental Theorem for Line Integrals.

This is a version of the Fundamental Theorem of Calculus for line integrals:
Let C be a smooth curve (in R2 or R3) parametrized by the vector-valued
function r(t), a ≤ t ≤ b. Let f be a differentiable function (in two or three
variables) such that ∇f is continuous. Then∫

C
∇f · dr = f(r(b))− f(r(a)).

In particular, if C1 is another smooth curve with the same initial and ter-
minal points as C, then ∫

C
∇f · dr =

∫
C1

∇f · dr
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A vector field F is conservative if there is a differentiable function f such
that F = ∇f . We say that

∫
C F · dr is independent of path if, for each pair

of piecewise smooth curves C1 and C2 with the same initial and terminal
points, we have

∫
C1

F · dr 6=
∫
C2

F · dr.
First test to see whether F is conservative: F is conservative if and only if∫
C F · dr is independent of path.

Second test to see whether F is conservative: Let F be a vector field on R2,
say F(x, y) = 〈P (x, y), Q(x, y)〉 where P and Q have continuous first order
partial derivatives. Then F is conservative if and only if Py = Qx.
§16.4. Green’s Theorem.

Let C be a simple closed curve in R2 with positive orientation. Let D be the
planar region bounded by C. Let F(x, y) = 〈P (x, y), Q(x, y)〉 be a vector
field such that P and Q have continuous first order partial derivatives. Then∫

C
F · dr =

∫
C

[P (x, y) dx + Q(x, y) dy] =
∫∫

D
(Qx − Py) dA.

This formula is useful, for instance, when C has several pieces and Qx − Py

is particularly easy to integrate.
§16.5. Curl and Divergence.

Write ∇ = 〈∂/∂x, ∂/∂y, ∂/∂z〉.
Let F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉.
The curl of F is

curl F = ∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣
= (Ry −Qz)i + (Pz −Rx)j + (Qx − Py)k

Third test to see whether F is conservative: If P , Q, and R have continuous
first order partial derivatives, then F is conservative if and only if curl F = 0.
The divergence of F is

div F = ∇ · F = Px + Qy + Rz

If P , Q, and R have continuous second order partial derivatives, then
div curl F = 0.
Let C be a simple closed curve in R2 with positive orientation. Let D be the
planar region bounded by C. Let F(x, y) = 〈P (x, y), Q(x, y)〉 be a vector
field such that P and Q have continuous first order partial derivatives.
Second version of Green’s Theorem:∮

C
F · dr =

∫∫
D

(curl F) · k dA.
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Assume that C is parametrized by r(t) = 〈x(t), y(t)〉 and set

n(t) =
〈

y′(t)
|r′(t)|

,− x′(t)
|r′(t)|

〉
Third version of Green’s Theorem:∮

C
F · n ds =

∫∫
D

div F dA

§16.6. Parametric Surfaces and Their Areas.

Parametric equations:

x = f(u, v) y = g(u, v) z = h(u, v) (u, v) in D

Vector equation:

r(u, v) = 〈f(u, v), g(u, v), h(u, v)〉 (u, v) in D

Be able to identify a surface described parametrically. Also, given a cartesian
equation for a surface, be able to describe it parametrically.
The tangent plane to a the parametric surface at the point (x0, y0, z0) =
(f(u0, v0), g(u0, v0), h(u0, v0)) is the plane passing through the point (x0, y0, z0)
with normal vector

n = ru(u0, v0)× rv(u0, v0).

The surface area of the surface is

A =
∫∫

D
|ru × rv| dA.

§16.7. Surface Integrals.

Let S be the surface describe parametrically by the vector-function r(u, v)
for (u, v) in D. Assume that r has continuous first order partial derivatives.
If f is a continuous real-falued function, then∫∫

S
f(x, y, z) dS =

∫∫
D

f(r(u, v))|ru × rv| dA.

The unit normal vector to S is

n =
1

|ru × rv|
ru × rv.

If is a continuous vector field on R3, then∫∫
S
F · dS =

∫∫
S
F · n dS =

∫∫
D

F · (ru × rv) dA
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§16.8. Stoke’s Theorem.

Let S be a piecewise smooth parametrized surface such that ∂S is simple
and closed. Let F = 〈P,Q, R〉 be a vector field such that P , Q and R have
continuous first order partial derivatives. Then∫∫

S
curl F · dS =

∮
∂S

F · dr.

This formula is useful, for instance, when ∂S has several pieces and the
integral

∫∫
S curl F · dS is particularly easy to evaluate.

§16.9. The Divergence Theorem.

Let E be a simple solid region, and assume that the boundary surface ∂E
is parametrized so that the unit normal n points away from E. Let F =
〈P,Q, R〉 be a vector field such that P , Q and R have continuous first order
partial derivatives. Then∫∫∫

E
div F dV =

∫∫
∂E

F · dS.

This formula is useful, for instance, when ∂E has several pieces and the
integral

∫∫∫
E div F dV is particularly easy to evaluate.

Be sure to review the sections of the text (especially the examples), your
notes, your homework, and your quizzes.

Practice Exercises:
pp. 1136–1137: 1–19, 21, 24, 25, 26(a,c), 27–40
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