Final exam review
Math 265
Fall 2007

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters 12-15.

§16.1. Vector Fields.

A vector field on \mathbb{R}^{2} is a function \mathbf{F} from \mathbb{R}^{2} to V_{2}.
Input: a point (x, y)
Output: a vector $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$.
A graph of \mathbf{F} can be obtained by plotting several vectors $\mathbf{F}(x, y)$ with initial point (x, y).
A vector field on \mathbb{R}^{3} is a function \mathbf{F} from \mathbb{R}^{3} to V_{3}.
Input: a point (x, y, z)
Output: a vector $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$.

§16.2. Line Integrals.

Let C be a smooth curve in \mathbb{R}^{2}, parametrized by the vector-valued function $\mathbf{r}(t)=\langle x(t), y(t)\rangle, a \leq t \leq b$. Let f be a continuous real-valued function of two variables.
Line integral of f with respect to arc length:

$$
\int_{C} f(x, y) d s=\int_{t=a}^{b} f(x(t), y(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

Line integral of f with respect to x :

$$
\int_{C} f(x, y) d x=\int_{t=a}^{b} f(x(t), y(t)) x^{\prime}(t) d t
$$

Line integral of f with respect to y :

$$
\int_{C} f(x, y) d y=\int_{t=a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
$$

If $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is a continuous vector field on \mathbb{R}^{2}, then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C}[P(x, y) d x+Q(x, y) d y] \\
& =\int_{t=a}^{b}\left[P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t)\right] d t
\end{aligned}
$$

Let C be a smooth curve in \mathbb{R}^{3}, parametrized by the vector-valued function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, a \leq t \leq b$. Let f be a continuous real-valued function of three variables.
Line integral of f with respect to arc length:

$$
\int_{C} f(x, y, z) d s=\int_{t=a}^{b} f(x(t), y(t), z(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

Line integral of f with respect to x :

$$
\int_{C} f(x, y, z) d x=\int_{t=a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t
$$

Line integral of f with respect to y :

$$
\int_{C} f(x, y, z) d y=\int_{t=a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t
$$

Line integral of f with respect to z :

$$
\int_{C} f(x, y, z) d y=\int_{t=a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
$$

If $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ is a continuous vector field on \mathbb{R}^{3}, then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r}= & \int_{C}[P(x, y, z) d x+Q(x, y, z)+R(x, y, z) d z] \\
& =\int_{t=a}^{b}\left[P(x(t), y(t), z(t)) x^{\prime}(t)+Q(x(t), y(t), z(t)) y^{\prime}(t)\right. \\
& \left.\quad+R(x(t), y(t), z(t)) z^{\prime}(t)\right] d t .
\end{aligned}
$$

§16.3. The Fundamental Theorem for Line Integrals.

This is a version of the Fundamental Theorem of Calculus for line integrals: Let C be a smooth curve (in \mathbb{R}^{2} or \mathbb{R}^{3}) parametrized by the vector-valued function $\mathbf{r}(t), a \leq t \leq b$. Let f be a differentiable function (in two or three variables) such that ∇f is continuous. Then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a)) .
$$

In particular, if C_{1} is another smooth curve with the same initial and terminal points as C, then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=\int_{C_{1}} \nabla f \cdot d \mathbf{r}
$$

A vector field \mathbf{F} is conservative if there is a differentiable function f such that $\mathbf{F}=\nabla f$. We say that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if, for each pair of piecewise smooth curves C_{1} and C_{2} with the same initial and terminal points, we have $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.
First test to see whether \mathbf{F} is conservative: \mathbf{F} is conservative if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path.
Second test to see whether \mathbf{F} is conservative: Let \mathbf{F} be a vector field on \mathbb{R}^{2}, say $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ where P and Q have continuous first order partial derivatives. Then \mathbf{F} is conservative if and only if $P_{y}=Q_{x}$.

§16.4. Green's Theorem.

Let C be a simple closed curve in \mathbb{R}^{2} with positive orientation. Let D be the planar region bounded by C. Let $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ be a vector field such that P and Q have continuous first order partial derivatives. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}[P(x, y) d x+Q(x, y) d y]=\iint_{D}\left(Q_{x}-P_{y}\right) d A .
$$

This formula is useful, for instance, when C has several pieces and $Q_{x}-P_{y}$ is particularly easy to integrate.

§16.5. Curl and Divergence.

Write $\nabla=\langle\partial / \partial x, \partial / \partial y, \partial / \partial z\rangle$.
Let $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$.
The curl of \mathbf{F} is

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
P & Q & R
\end{array}\right| \\
& =\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k}
\end{aligned}
$$

Third test to see whether \mathbf{F} is conservative: If P, Q, and R have continuous first order partial derivatives, then \mathbf{F} is conservative if and only if $\operatorname{curl} \mathbf{F}=\mathbf{0}$.
The divergence of \mathbf{F} is

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=P_{x}+Q_{y}+R_{z}
$$

If P, Q, and R have continuous second order partial derivatives, then $\operatorname{div} \operatorname{curl} \mathbf{F}=\mathbf{0}$.
Let C be a simple closed curve in \mathbb{R}^{2} with positive orientation. Let D be the planar region bounded by C. Let $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ be a vector field such that P and Q have continuous first order partial derivatives.
Second version of Green's Theorem:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A .
$$

Assume that C is parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ and set

$$
\mathbf{n}(t)=\left\langle\frac{y^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|},-\frac{x^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}\right\rangle
$$

Third version of Green's Theorem:

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \operatorname{div} \mathbf{F} d A
$$

§16.6. Parametric Surfaces and Their Areas.

Parametric equations:

$$
x=f(u, v) \quad y=g(u, v) \quad z=h(u, v) \quad(u, v) \text { in } D
$$

Vector equation:

$$
\mathbf{r}(u, v)=\langle f(u, v), g(u, v), h(u, v)\rangle \quad(u, v) \text { in } D
$$

Be able to identify a surface described parametrically. Also, given a cartesian equation for a surface, be able to describe it parametrically.
The tangent plane to a the parametric surface at the point $\left(x_{0}, y_{0}, z_{0}\right)=$ $\left(f\left(u_{0}, v_{0}\right), g\left(u_{0}, v_{0}\right), h\left(u_{0}, v_{0}\right)\right)$ is the plane passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector

$$
\mathbf{n}=\mathbf{r}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{r}_{v}\left(u_{0}, v_{0}\right) .
$$

The surface area of the surface is

$$
A=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

§16.7. Surface Integrals.

Let S be the surface describe parametrically by the vector-function $\mathbf{r}(u, v)$ for (u, v) in D. Assume that \mathbf{r} has continuous first order partial derivatives. If f is a continuous real-falued function, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A .
$$

The unit normal vector to S is

$$
\mathbf{n}=\frac{1}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|} \mathbf{r}_{u} \times \mathbf{r}_{v} .
$$

If is a continuous vector field on \mathbb{R}^{3}, then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A
$$

§16.8. Stoke's Theorem.

Let S be a piecewise smooth parametrized surface such that ∂S is simple and closed. Let $F=\langle P, Q, R\rangle$ be a vector field such that P, Q and R have continuous first order partial derivatives. Then

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r} .
$$

This formula is useful, for instance, when ∂S has several pieces and the integral $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ is particularly easy to evaluate.

§16.9. The Divergence Theorem.

Let E be a simple solid region, and assume that the boundary surface ∂E is parametrized so that the unit normal n points away from E. Let $F=$ $\langle P, Q, R\rangle$ be a vector field such that P, Q and R have continuous first order partial derivatives. Then

$$
\iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S} .
$$

This formula is useful, for instance, when ∂E has several pieces and the integral $\iiint_{E} \operatorname{div} \mathbf{F} d V$ is particularly easy to evaluate.

Be sure to review the sections of the text (especially the examples), your notes, your homework, and your quizzes.

Practice Exercises:

pp. 1136-1137: 1-19, 21, 24, 25, 26(a,c), 27-40

