Midterm 3 review
Math 265
Fall 2007

§14.8. Lagrange Multipliers.

Case 1: One constraint.
To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$:
Step 1: Find all values of x, y, z, λ such that $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and $g(x, y, z)=k$. In other words, solve the following system of equations:

$$
\begin{aligned}
f_{x}(x, y, z) & =\lambda g_{x}(x, y, z) \\
f_{y}(x, y, z) & =\lambda g_{y}(x, y, z) \\
f_{z}(x, y, z) & =\lambda g_{z}(x, y, z) \\
g(x, y, z) & =k
\end{aligned}
$$

Step 2: Evaluate f at all the points (x, y, z) that result from Step 1. The largest of these values is the maximum value of f; the smallest of these values is the minimum value of f.
Case 2: Two constraints.
To find the maximum and minimum values of $f(x, y, z)$ subject to the constraints $g(x, y, z)=k$ and $h(x, y, z)=c$:
Step 1: Find all values of x, y, z, λ, μ such that $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+$ $\mu \nabla g(x, y, z)$ and $g(x, y, z)=k$ and and $h(x, y, z)=c$. In other words, solve the following system of equations:

$$
\begin{aligned}
f_{x}(x, y, z) & =\lambda g_{x}(x, y, z)+\mu h_{x}(x, y, z) \\
f_{y}(x, y, z) & =\lambda g_{y}(x, y, z)+\mu h_{y}(x, y, z) \\
f_{z}(x, y, z) & =\lambda g_{z}(x, y, z)+\mu h_{z}(x, y, z) \\
g(x, y, z) & =k \\
h(x, y, z) & =c
\end{aligned}
$$

Step 2: Evaluate f at all the points (x, y, z) that result from Step 1. The largest of these values is the maximum value of f; the smallest of these values is the minimum value of f.

§15.1. Double Integrals over Rectangles.

Let R be a rectangle in the $x y$-plane:

$$
R=[a, b] \times[c, d]=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} .
$$

Let f be a function defined on R. Be able to approximate the double integral $\iint_{R} f(x, y) d A$ using the following procedure:
Step 1: Partition R into subrectangles, each of area $\Delta A=\Delta x \cdot \Delta y$ where $\Delta x=(b-a) / m$ and $\Delta y=(d-c) / n$. The values of m and n will be given. This will yield $m n$ rectangles $R_{i, j}$.
Step 2: For each rectangle $R_{i, j}$ choose a sample point $\left(x_{i, j}^{*}, y_{i, j}^{*}\right)$ in $R_{i, j}$. In practice, the method for choosing sample points will be given to you. For instance, you may be told to choose the upper-left corner of each subrectangle. "Use the midpoint rule" means choose the midpoint of each subrectangle.
Step 3: Evaluate f at each sample point, multiply by ΔA, and add up the results:

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i, j}^{*}, y_{i, j}^{*}\right) \Delta A .
$$

§15.2. Iterated Integrals.

Let R be a rectangle in the $x y$-plane:

$$
R=[a, b] \times[c, d]=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} .
$$

Let f be a function defined on R. If f is continuous on R, then

$$
\iint_{R} f(x, y) d A=\int_{x=a}^{b} \int_{y=c}^{d} f(x, y) d y d x=\int_{y=c}^{d} \int_{x=a}^{b} f(x, y) d x d y
$$

§15.3. Double Integrals over General Regions.

Let D be a region in the $x y$-plane and f a function that is continuous on D. If there are continuous functions $g_{1}(x), g_{2}(x)$ such that

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{x=a}^{b} \int_{y=g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x .
$$

If there are continuous functions $h_{1}(y), h_{2}(y)$ such that

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{y=c}^{d} \int_{x=h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y .
$$

Property: The area of D is $A=\iint_{D} d A$.

§15.4. Double Integrals in Polar Coordinates.

Polar coordinates for the point (x, y) are (r, θ) where $x=r \cos \theta, y=r \sin \theta$, $x^{2}+y^{2}=r^{2}$ and $\tan \theta=y / x$.
Given a region

$$
D=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

if f is continuous on D, then we have

$$
\iint_{D} f(x, y) d A=\int_{\theta=\alpha}^{\beta} \int_{r=a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Given a region

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

if f is continuous on D, then we have

$$
\iint_{D} f(x, y) d A=\int_{\theta=\alpha}^{\beta} \int_{r=h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta .
$$

§15.5. Applications of Double Integrals.

Consider a lamina described by the region D in the $x y$-plane with density function $\rho(x, y)$. The mass of the lamina is

$$
m=\iint_{D} \rho(x, y) d A
$$

The moment of the lamina about the x-axis is

$$
M_{x}=\iint_{D} y \rho(x, y) d A
$$

The moment of the lamina about the y-axis is

$$
M_{y}=\iint_{D} x \rho(x, y) d A
$$

The center of mass of the lamina is (\bar{x}, \bar{y}) where $\bar{x}=M_{y} / m$ and $\bar{y}=M_{x} / m$.

§15.6. Surface Area.

The area of the surface with equation $z=f(x, y)$ where (x, y) runs through all points in a region D in the $x y$-plane is

$$
A=\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A .
$$

§15.7. Triple Integrals.

Let B be a rectangular box in three-space:

$$
B=[a, b] \times[c, d] \times[r, s]=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\} .
$$

Let f be a function defined on B. If f is continuous on B, then

$$
\begin{aligned}
\iiint_{R} f(x, y, z) d V & =\int_{x=a}^{b} \int_{y=c}^{d} \int_{z=r}^{s} f(x, y, z) d z d y d x \\
& =\int_{y=c}^{d} \int_{z=r}^{s} \int_{x=a}^{b} f(x, y, z) d x d z d y
\end{aligned}
$$

If there are continuous functions $g_{1}(x), g_{2}(x), h_{1}(x, y), h_{2}(x, y)$ such that $E=$ $\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x), h_{1}(x, y) \leq z \leq h_{2}(x, y)\right\}$ then

$$
\iiint_{E} f(x, y, z) d V=\int_{x=a}^{b} \int_{y=g_{1}(x)}^{g_{2}(x)} \int_{z=h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z d y d x .
$$

Property: The volume of E is $V=\iiint_{E} d V$.
Property: Given an object in space described by the region E with density function $\rho(x, y, z)$, the mass of the object is $m=\iiint_{E} \rho(x, y, z) d V$.

§15.8. Triple Integrals in Cylindrical and Spherical Coordinates.

Cylindrical coordinates for the point (x, y, z) are (r, θ, z) where $x=r \cos \theta$, $y=r \sin \theta, x^{2}+y^{2}=r^{2}$ and $\tan \theta=y / x$. Given a region

$$
D=\left\{(r, \theta, z) \mid 0 \leq \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta), u_{1}(r, \theta) \leq z \leq u_{2}(r, \theta)\right\}
$$

if f is continuous on D, then we have

$$
\iint_{D} f(x, y, z) d V=\int_{\theta=\alpha}^{\beta} \int_{r=h_{1}(\theta)}^{h_{2}(\theta)} \int_{z=u_{1}(r, \theta)}^{u_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta .
$$

Spherical coordinates for the point (x, y, z) are (ρ, θ, ϕ) where $x=\rho \sin \phi \cos \theta$, $y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$, and $x^{2}+y^{2}+z^{2}=\rho^{2}$. Given a region

$$
D=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

if f is continuous on D, then we have

$$
\begin{aligned}
& \iint_{D} f(x, y, z) d V \\
& =\int_{\phi=c}^{d} \int_{\theta=\alpha}^{\beta} \int_{\rho=a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

§15.9. Changes of Variables in Multiple Integrals.

A C^{1} transformation of the $u v$-plane to the $x y$-plane is a rule of assignment: Input: a point (u, v)
Output: a point (x, y) where $x=g(u, v)$ and $y=h(u, v)$, and the functions g and h have continuous first-order partial derivatives.
The Jacobian of the transformation is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|=\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right|=g_{u} h_{v}-g_{v} h_{u}
$$

Let S be a region in the $u v$-plane and let R be the image of S under the transformation. Then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

A C^{1} transformation of $u v w$-space to $x y z$-space is a rule of assignment:
Input: a point (u, v, w)
Output: a point (x, y, z) where $x=g(u, v, w)$ and $y=h(u, v, w)$ and $z=$ $k(u, v, w)$, and the functions g, h, k have continuous first-order partials.
The Jacobian of the transformation is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\partial x / \partial u & \partial x / \partial v & \partial x / \partial w \\
\partial y / \partial u & \partial y / \partial v & \partial y / \partial w \\
\partial z / \partial u & \partial z / \partial v & \partial z / \partial w
\end{array}\right|=\left|\begin{array}{lll}
g_{u} & g_{v} & g_{w} \\
h_{u} & h_{v} & h_{w} \\
k_{u} & k_{v} & k_{w}
\end{array}\right|
$$

Let S be a region in $u v w$-space and let R be the image of S under the transformation. Then

$$
\begin{aligned}
& \iiint_{R} f(x, y) d V \\
= & \iiint_{S} f(g(u, v, w), h(u, v, w), k(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w .
\end{aligned}
$$

Be sure to review the sections of the text (especially the examples), your notes, your homework, and your quizzes.

Practice Exercises:

p. 977: 59-62
pp. 1050-1051: 1-36, 38, 39, 41, 42, 47-51

