
Midterm 2 review
Math 265
Fall 2007

§13.3. Arc Length and Curvature.

Assume that the curve C is described by the vector-valued function r(r) =
〈f(t), g(t), h(t)〉, and that C is traversed exactly once as t ranges from a to
b. If r(t) is piecewise smooth, then the length of C is

L =
∫ b
a |r

′(t)| dt =
∫ b
a

√
[f(t)]2 + [g(t)]2 + [h(t)]2 dt.

The arc length function for r(t) is

s(t) =
∫ t
a |r

′(u)| du =
∫ t
a

√
[f(u)]2 + [g(u)]2 + [h(u)]2 du.

The Fundamental Theorem of Calculus implies that s(t) is differentiable and
s′(t) = |r′(t)|.
The curve C is parametrized with respect to arc length if |r′(t)| = 1.
To find a parametrization of C with respect to arc length, take the following
steps.
1. Find the arc length function s(t).
2. Set s = s(t) and solve for t in terms of s: so s = s(t).
3. Set r1(s) = r(t(s)). This is the parametrization by arc length.
The curvature of C is κ = |dT/ds| where T is the unit tangent vector

T(t) =
1
|r′(t)|

r′(t).

In practice, we compute κ with the following formulas:

κ =
|T′(t)|
|r′(t)|

=
|r′(t)× r′′(t)|
|r′(t)|3

The unit normal vector for r(t) is

N(t) =
1

|T′(t)|
T′(t).

The binormal vector for r(t) is

B(t) = T(t)×N(t).

These vectors satisfy the following properties:

|T(t)| = 1 |N(t)| = 1 |B(t)| = 1
T(t) ·N(t) = 0 T(t) ·B(t) = 0 N(t) ·B(t) = 0
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The normal plane for the curve at the point P (f(t0), g(t0), h(t0)) is the plane
passing through P with normal vector T(t).
The osculating plane for the curve at P is is the plane passing through P
with normal vector B(t).

§13.4. Motion in Space: Velocity and Acceleration.

The motion of a particle in space is described by r(r) = 〈f(t), g(t), h(t)〉.
The velocity, speed and acceleration of the particle are, respectively,

v(t) = r′(t)
v(t) = |v(t)| = |r′(t)| = s′(t)
a(t) = v′(t) = r′′(t)

Acceleration can be written in terms of the unit normal vector and the
binormal vector:

a(t) = v′(t)T(t) + [v(t)]2κ(t)N(t).

The tangential component of a(t) is

aT = v′(t) =
r′(t) · r′′(t)
|r′(t)|

and the normal component of a(t) is

aN = [v(t)]2κ(t) =
|r′(t)× r′′(t)|
|r′(t)|

and we have a(t) = aTT(t) + aNN(t).

§14.1. Functions of Several Variables.

A function of two variables is a rule of assignment f where
Input: an ordered pair (x, y) of real numbers, and
Output: a real number f(x, y).
The domain of f is the set of all allowable inputs. The range of f is the set
of all outputs. The graph of f is the set of all points (x, y, z) in 3-space such
that z = f(x, y). The level curves of f are the curves f(x, y) = k where k is
a constant in the range of f . A contour map of f is a graph of several level
curves.
A function of three variables is a rule of assignment f where
Input: an ordered triple (x, y, z) of real numbers, and
Output: a real number f(x, y, z).
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The domain of f is the set of all allowable inputs. The range of f is the set
of all outputs. The level surfaces of f are the surfaces f(x, y, z) = k where
k is a constant in the range of f .

§14.2. Limits and Continuity.

Let f be a function of two variables x and y, and let L be a real number.
The limit of f(x, y) as (x, y) approaches (a, b) is L if for every ε > 0 there
exists a δ > 0 such that |f(x, y) − L| < ε whenever (x, y) is in the domain
of f and 0 <

√
(x− a)2 + (y − b)2 < δ. In other words, we write

lim
(x,y)→(a,b)

f(x, y) = L

when f(x) gets arbitrarily close to L as (x, y) gets arbitrarily close to (x, y)
from any direction.
lim(x,y)→(a,b) f(x, y) does not exist under the following conditions: There
exist two paths to (a, b) such that f(x, y) → L1 along the first path and
f(x, y)→ L2 along the second path where L1 6= L2.
The function f is continuous at (a, b) if lim(x,y)→(a,b) f(x, y) = f(a, b), that
is, when the following conditions are satisfied:
1. f(a, b) exists;
2. lim(x,y)→(a,b) f(x, y) exists; and
3. lim(x,y)→(a,b) f(x, y) = f(a, b).
Every polynomial in two variables is continuous at every point (a, b). Every
rational function in two variables is continuous at every point in its domain,
that is, at every point where the denominator is nonzero. If g(x, y) is con-
tinuous at the point (a, b) and h(t) is continuous at the point g(a, b), then
the composition f(x, y) = h(g(x, y)) is continuous at the point (a, b).

§14.3. Partial Derivatives.

Let f be a function of two variables x and y. The partial derivative of f
with respect to x at the point (a, b) is

fx(a, b) =
∂f

∂x
=

d

dx
[f(x, b)]

∣∣∣∣
x=a

and the partial derivative of f with respect to y at the point (a, b) is

fy(a, b) =
∂f

∂y
=

d

dy
[f(a, y)]

∣∣∣∣
y=b

.

To compute fx(x, y), treat y as a constant and take the derivative with re-
spect to x. To compute fy(x, y), treat x as a constant and take the derivative
with respect to y.
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The second order partial derivatives of f are

fxx(x, y) = (fx)x(x, y) fyx(x, y) = (fy)x(x, y)
fxy(x, y) = (fx)y(x, y) fyy(x, y) = (fy)y(x, y).

Higher order partial derivatives like fxyyx(x, y) are defined similarly.
Clairaut’s Theorem: If f is defined on a disk D containing the point (a, b)
and the functions fxy and fyx are continuous on D, then fxy(a, b) = fyx(a, b).
Partial derivatives for functions of three variables are defined similarly:

fx(a, b, c) =
∂f

∂x
=

d

dx
[f(x, b, c)]

∣∣∣∣
x=a

fy(a, b, c) =
∂f

∂y
=

d

dy
[f(a, y, c)]

∣∣∣∣
y=b

fz(a, b, c) =
∂f

∂z
=

d

dz
[f(a, b, z)]

∣∣∣∣
z=c

and so on

§14.4. Tangent Planes and Linear Approximations.

Let S be the surface z = f(x, y) and assume that fx and fy are continuous at
(x0, y0). Consider the point P (x0, y0, z0) where z0 = f(x0, y0). The tangent
plane to S at the point P is described by the equation

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

The linear approximation of f at (x0, y0) is

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

The function f is differentiable at (x0, y0) if the linear approximation of f
at (x0, y0) is a “good” approximation of f for (x, y) near to (x0, y0). See p.
926 of the text for a technical definition.
Criterion for differentiability: If the partial derivatives fx and fy are con-
tinuous at (x0, y0), then f is differentiable at (x0, y0).
The differential of f is

df = fx(x, y) dx+ fy(x, y) dy.
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§14.5. The Chain Rule.

Case 1. z = f(x, y) and x = g(t) and y = h(t). Then z = f(g(t), h(t)) and

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Case 2. z = f(x, y) and x = g(s, t) and y = h(s, t). Then z = f(g(s, t), h(s, t))
and

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

Case n. Assume u = f(x1, x2, . . . , xn) and x1 = g1(t1, . . . , tm), x2 =
g2(t1, . . . , tm), . . . , xn = gn(t1, . . . , tm). Then

u = f(g1(t1, . . . , tm), g2(t1, . . . , tm), . . . , gn(t1, . . . , tm))

and
∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+

∂u

∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn

∂ti

for i = 1, . . . ,m.
Implicit differentiation.
Case 1. x and y satisfy F (x, y) = 0. If F is differentiable and Fy(x, y) 6= 0,
then

dy

dx
= −Fx(x, y)

Fy(x, y)

Case 2. x, y and z satisfy F (x, y, z) = 0. If F is differentiable and
Fz(x, y, z) 6= 0, then

∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)
∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)

§14.6. Directional Derivatives and the Gradient Vector.

Let f be a function of x and y. The gradient of f is

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 .

The directional derivative of f in the direction of a unit vector u = 〈a, b〉 at
the point (x0, y0) is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)
h

when the limit exists. If f is differentiable, then

Duf(x0, y0) = ∇f(x, y) · 〈a, b〉 .
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Let f be a function of x, y and z. The gradient of f is

∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉 .

The directional derivative of f in the direction of a unit vector u = 〈a, b, c〉
at the point (x0, y0, z0) is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)
h

when the limit exists. If f is differentiable, then

Duf(x0, y0, z0) = ∇f(x, y, z0) · 〈a, b, c〉 .

Let f be a differentiable function of 2 or 3 variables. The maximal value of
Duf at a point is |∇f |, and it occurs in the direction of ∇f . The minimal
value of Duf at a point is −|∇f |, and it occurs in the direction of −∇f .
Let f be a differentiable function of x, y and z. The tangent plane to the
level surface f(x, y, z) = k at the point P (x0, y0, z0) has equation

∇f(x0, y0, z0) · 〈x− x0, y − y0, z − z0〉 = 0.

The normal line to the level surface at P is the line passing through the
point P with direction vector ∇f(x0, y0, z0).

§14.7. Maximum and Minimum Values.

Let f be a function of x and y.
f has a local maximum at (a, b) if f(x, y) ≤ f(a, b) for all points (x, y) in
some disk centered at (a, b).
f has an absolute maximum at (a, b) if f(x, y) ≤ f(a, b) for all points (x, y)
in the domain of f .
f has a local minimum at (a, b) if f(x, y) ≥ f(a, b) for all points (x, y) in
some disk centered at (a, b).
f has an absolute minimum at (a, b) if f(x, y) ≥ f(a, b) for all points (x, y)
in the domain of f .
First Derivative Test. If f has a local maximum or a local minimum at (a, b)
and the partial derivatives fx(a, b) and fy(a, b) exist, then fx(a, b) = 0 =
fy(a, b).
The point (a, b) is a critical point for f if fx(a, b) = 0 = fy(a, b).
Second Derivative Test. Assume that the second order partial derivatives of
f are continuous in a disk with center (a, b). Assume that (a, b) is a critical
point for f and set

D = fxx(a, b)fyy(a, b)− (fxy(a, b))2 =
∣∣∣∣fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

∣∣∣∣
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(a) If D > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).
(b) If D > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).
(c) If D < 0, then f has a saddle point at (a, b).
(d) If D = 0, then no conclusion may be drawn from the test.
A subset D of the plane is closed if it contains all its boundary points. The
set D is bounded if it is contained in some disk.
If f is continuous on a closed, bounded regions D, then f has an absolute
maximum and an absolute minimum in D. To find the absolute maximum
and an absolute minimum, take the following steps.
1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest value from steps 1 and 2 is the absolute maximum of f in D.
The smallest value from steps 1 and 2 is the absolute minimum of f in D.

Be sure to review the sections of the text (especially the examples), your
notes, your homework, and your quizzes.

Practice Exercises:
pp. 882–883: 6(c), 8, 10–13, 15, 17–20
pp. 975–977: 1–10, 13–17, 19–23, 25-29, 31–40, 42–48, 51–56, 63
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