MATH 720, Algebra I Exercises 15 Due Fri 07 Dec

Exercise 1. Let R be a commutative ring with identity.

- (a) Show that the set of nilpotent elements of R is an ideal.
- (b) Show that, if $r \in R$ is nilpotent and $u \in R$ is a unit, then u + r is a unit.

Exercise 2. Let R be a commutative ring with identity, and let $f = a_0 + a_1x + \cdots + a_dx^n d \in R[x]$.

- (a) Show that f is nilpotent if and only if each a_i is nilpotent.
- (b) Show that f is a unit in R[x] if and only if a_0 is a unit and a_1, \ldots, a_d are nilpotent. In particular, if k is a field, then the units of k[x] are precisely the nonzero constant polynomials.
- (c) Show that f is a zerodivisor in R[x] if and only if there exists an element $0 \neq r \in R$ such that $ra_i=0$ for each i.
- (d) State and prove the versions of parts (a)–(c) for polynomials in n variables.

Exercise 3. Let R be a UFD and $0 \neq f = a_0 + a_1x + \dots + a_dx^d \in R[x]$.

- (a) Show that C(tf) = [t]C(f) for each $t \in R$.
- (b) Show that, if C(f) = [r], then there is a primitive polynomial g such that f = rg.