MATH 720, Algebra I
Exercises 14
Due Fri 30 Nov
Exercise 1. Find an example of a commutative ring R with identity and two polynomials $f, g \in R[x]$ such that $f g \neq 0$ and $\operatorname{deg}(f g) \neq \operatorname{deg}(f)+\operatorname{deg}(g)$.
Exercise 2. Let R be a commutative ring with identity.
(a) Fix an element $r \in R$ and let $\phi: R[x] \rightarrow R$ be the evaluation homomorphism $\phi(f)=f(r)$. Show that $\operatorname{Ker}(\phi)=(x-r)$.
(b) Let $n \geqslant 1$ and let $r_{1}, \ldots, r_{n} \in R$. Let $\phi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R$ be the evaluation homomorphism $\phi(f)=f\left(r_{1}, \ldots, r_{n}\right)$. Show that $\operatorname{Ker}(\phi)=$ $\left(x_{1}-r_{1}, \ldots, x_{n}-r_{n}\right)$.

Exercise 3. Let n be a positive integer.
(a) Show that, if k is a field, then the polynomial ring $k[x]$ is an ED (and therefore is a PID and a UFD).
(b) Show that $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is not a PID (and therefore is not an ED).
(c) Show that, if k is a field, then $k\left[x_{1}, \ldots, x_{n}\right]$ is not a PID (and therefore is not an ED).

