MATH 720, Algebra I Exercises 12 and 13 Due Wed 21 Nov

Exercise 1. Let R be a nonzero commutative ring with identity, and let $a, b \in R$. Show that the following conditions are equivalent:

(i)
$$a \mid b;$$

(ii) $b \in (a);$
(iii) $(b) \subseteq (a).$

Exercise 2. Let R be a nonzero commutative ring with identity, and let $a, b \in R$. Consider the following conditions:

- (i) $a \mid b$ and $b \mid a$;
- (ii) $b \in (a)$ and $a \in (b)$;
- (iii) (b) = (a);
- (iv) There is a unit $u \in R$ such that b = ua.

Show the following:

- (a) (i) \iff (ii) \iff (iii) \iff (iv).
- (b) If R is an integral domain, then (iii) \Longrightarrow (iv).
- (c) Let $R = \mathbb{Z} \times \mathbb{Z}$. Show that ((1,1)) = R = ((1,-1)), but (1,1) is not a unit multiple of (1,-1). Hence, the implication (iii) \Longrightarrow (iv) can fail when R is not an integral domain.

Exercise 3. Let R be a nonzero commutative ring with identity, and let $a, b \in R$.

- (a) If R is an integral domain and (a) = (ab), then b is a unit.
- (b) Show that the conclusion of part (b) can fail if R is not an integral domain.

Exercise 4. Let R be a nonzero commutative ring with identity. Let $a, u \in R$ and assume that u is a unit in R.

- (a) Show that *a* is prime if and only if *ua* is prime.
- (b) Show that a is irreducible if and only if ua is irreducible.

Exercise 5. Consider the set $\mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$.

- (a) Show that $\mathbb{Z}[\sqrt{10}]$ is an integral domain.
- (b) Show that every element of $\mathbb{Z}[\sqrt{10}]$ can be factored into a product of irreducible elements, but that this fatorization need not be unique up to order and multiplication by units. (See Hungerford p. 140.)

Exercise 6. Show that the set $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean domain. (See Hungerford pages 139 and 141. Do not forget to verify that $\mathbb{Z}[i]$ is an integral domain.)