MATH 720, Algebra I Exercises 10 Due Fri 02 Nov Instructions: Complete four of the following problems. You may submit the fifth problem for extra credit.

Exercise 1. Let \mathcal{C} be a category and fix an object A in \mathcal{C} . Show that the definition of Hom_{\mathcal{C}}(-, A) from Example 1.2.5 of the notes yields a contravariant functor $\mathcal{C} \to \underline{\text{sets}}$.

Exercise 2. Fix an integer $n \ge 2$. Show that the following conditions are equivalent.

- (i) $\mathbb{Z}/n\mathbb{Z}$ is a field;
- (ii) $\mathbb{Z}/n\mathbb{Z}$ is an integral domain;
- (iii) n is prime.

Exercise 3. Let G be a group with operation written multiplicatively, and let R be a ring with identity. Let R[G] be the group ring from Example 3.1.5.

- (a) Show that R[G] is a ring with identity $1_{R[G]} = 1_R e_G$.
- (b) Show that R[G] is commutative if and only if R is commutative and G is abelian.

Exercise 4. Let R be a ring with identity. An element $r \in R$ is a *unit* if it has a two-sided inverse in R. Let $I \subseteq R$ be a left ideal (or a right ideal). Show that the following conditions are equivalent.

- (i) I = R;
- (ii) $1_R \in I$;
- (iii) I contains a unit.

Exercise 5. Let R be a commutative ring with identity. Show that the following conditions are equivalent.

- (i) R is a field;
- (ii) R has exactly two ideals;
- (iii) $\{0_R\}$ and R are the only ideals of R.