MATH 720, Algebra I Exercises 9 Due Fri 26 Oct

Exercise 1. Let $d_1, \ldots, d_k \in \mathbb{Z}$, and let $\mathbf{f}_1, \ldots, \mathbf{f}_n \in \mathbb{Z}^n$ be a basis. Show that, if $n \ge k$, then

$$\mathbb{Z}^n/\langle d_1\mathbf{f}_1,\ldots,d_k\mathbf{f}_k\rangle\cong\mathbb{Z}/d_1\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}/d_k\mathbb{Z}\oplus\mathbb{Z}^{n-k}.$$

Exercise 2. Let G be an abelian group, and prove the following:

- (a) If G is free, then G is torsion-free.
- (b) If G is finitely generated and torsion-free, then G is free.
- (c) The additive abelian group \mathbb{Q} is torsion-free and not free.¹

Exercise 3. Let G be an abelian group, and prove the following:

- (a) If G is finite, then G is torsion.
- (b) If G is finitely generated and torsion, then G is finite.
- (c) The additive abelian group \mathbb{Q}/\mathbb{Z} is torsion and not finitely generated. In particular, \mathbb{Q}/\mathbb{Z} is not finite.¹

Exercise 4. Let G be an abelian group, and set

 $G_{tor} = \{ g \in G \mid ng = 0 \text{ for some } n \in \mathbb{N} \}.$

- (a) Show that, if G is finitely generated, then G_{tor} is finitely generated.
- (b) Give an example of an abelian group G such that G_{tor} is not finitely generated.

¹This shows that the condition "finitely generated" in part (b) is necessary.