MATH 720, Algebra I
Exercises 5
Due Fri 28 Sep
Exercise 1. Let $\varphi: G \rightarrow H$ be a group homomorphism.
(a) Show $\varphi([G, G]) \subseteq[H, H]$.
(b) Show $\varphi\left(G^{(n)}\right) \subseteq H^{(n)}$ for each $n \geqslant 0$.
(c) Show $\varphi\left(G_{(n)}\right) \subseteq H_{(n)}$ for each $n \geqslant 0$.
(d) If φ is an epimorphism, then $\varphi\left(G^{(n)}\right)=H^{(n)}$ and $\varphi\left(G_{(n)}\right)=H_{(n)}$ for each $n \geqslant 0$.
(e) Find an example where $\varphi([G, G]) \neq[H, H]$.

Exercise 2. Let G be a group and $x \in G$. The function $\varphi_{x}: G \rightarrow G$ given by $\varphi_{x}(y)=x y x^{-1}$ is an inner automorphism of G. Let $\operatorname{Inn}(G)$ denote the set of all inner automorphisms of G. Show $\operatorname{Inn}(G) \preccurlyeq \operatorname{Aut}(G)$.
Exercise 3. Assume that G acts on sets S and S^{\prime}.
(a) For all $s \in S$ and all $g \in G$, show that $g G_{s} g^{-1}=G_{g s}$.
(b) If $\varphi: S \rightarrow S^{\prime}$ is an isomorphism of G-sets, then $\varphi^{-1} S^{\prime} \rightarrow S$ is an isomorphism of G-sets.

Exercise 4. Let G be a group.
(a) Show $G^{(n)} \subseteq G_{(n)}$ for each $n \geqslant 0$.
(b) If G is nilpotent, then G is solvable.

