MATH 720, Algebra I Exercises 2 Due Fri 07 Sep

Exercise 1. Let $f: G \to H$ be a group homomorphism.

- (a) $\operatorname{Ker}(f) \leq G$ and $\operatorname{Im}(f) \leq H$.
- (b) The function $g: G/\operatorname{Ker}(f) \to \operatorname{Im}(f)$ given by $\overline{g} \mapsto f(g)$ is a well-defined isomorphism and so $\operatorname{Im}(f) \cong G/\operatorname{Ker}(f)$.
- (c) f is a monomorphism if and only if $\text{Ker}(f) = \{e_G\}$.

Exercise 2. Let G be a group, and let $\{H_{\lambda} \mid \lambda \in \Lambda\}$ be a collection of subgroups of G.

- (a) $\cap_{\lambda} H_{\lambda} \leq G$.
- (b) If $H_{\lambda} \leq G$ for all $\lambda \in \Lambda$ }, then $\cap_{\lambda} H_{\lambda} \leq G$.
- (c) Give an example of a group G with subgroups H and K such that $H \cup K$ is not a subgroup of G.

Exercise 3. Let G be a group and $H \leq G$.

- (a) If G is abelian, then G/H is abelian.
- (b) Give an example where G/H is abelian and G is non-abelian.

Exercise 4. Show that the relation " \cong " is an equivalence relation.

Exercise 5. If $H \leq \mathbb{Z}$, then $H = n\mathbb{Z} = \langle n \rangle$ for some $n \ge 0$.

Exercise 6. If $H \leq G$ and [G:H] = 2, then $H \leq G$.