MATH 720, Algebra I Exercises 1 Due Fri 31 Aug

Exercise 1. Let G be a group and fix $a, b, c \in G$.

- (a) If ab = ac, then b = c.
- (b) If ba = ca, then b = c.
- (c) The inverse of a in G is unique. [Assume that b and b' are inverses for a, and show b = b'.] [Once this is shown, we write a^{-1} for the unique inverse of a in G.] (d) $(a^{-1})^{-1} = a$. (e) $(ab)^{-1} = b^{-1}a^{-1}$.

- (f) If $a^2 = a$, then a = e.

Exercise 2. Let G be a group. If $a^2 = e$ for all $a \in G$, then G is abelian.

Exercise 3. (Generalized Commutative Law) Let S be a commutative semigroup and fix elements $a_1, \ldots, a_n \in S$. For any permutation i_1, \ldots, i_n of $1, \ldots, n$ show that $a_{i_1} \ldots a_{i_n} = a_1 \ldots a_n$.

Exercise 4. If $H \leq G$, then $e_H = e_G$, and for all $h \in H$ the inverse of h in H is the same as the inverse of h in G.

Exercise 5. Assume $H \leq G$ and fix $a, b \in G$.

- (a) The relation \sim is an equivalence relation.
- (b) The following conditions are equivalent:
 - (i) $a \sim b$;
 - (ii) Ha = Hb.
 - (iii) aH = bH;