MATH 720, Algebra I
Exercises 1
Due Fri 31 Aug
Exercise 1. Let G be a group and fix $a, b, c \in G$.
(a) If $a b=a c$, then $b=c$.
(b) If $b a=c a$, then $b=c$.
(c) The inverse of a in G is unique. [Assume that b and b^{\prime} are inverses for a, and show $b=b^{\prime}$.] [Once this is shown, we write a^{-1} for the unique inverse of a in G.]
(d) $\left(a^{-1}\right)^{-1}=a$.
(e) $(a b)^{-1}=b^{-1} a^{-1}$.
(f) If $a^{2}=a$, then $a=e$.

Exercise 2. Let G be a group. If $a^{2}=e$ for all $a \in G$, then G is abelian.
Exercise 3. (Generalized Commutative Law) Let S be a commutative semigroup and fix elements $a_{1}, \ldots, a_{n} \in S$. For any permutation i_{1}, \ldots, i_{n} of $1, \ldots, n$ show that $a_{i_{1}} \ldots a_{i_{n}}=a_{1} \ldots a_{n}$.
Exercise 4. If $H \leqslant G$, then $e_{H}=e_{G}$, and for all $h \in H$ the inverse of h in H is the same as the inverse of h in G.

Exercise 5. Assume $H \preccurlyeq G$ and fix $a, b \in G$.
(a) The relation \sim is an equivalence relation.
(b) The following conditions are equivalent:
(i) $a \sim b$;
(ii) $H a=H b$.
(iii) $a H=b H$;

