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Preface



Acknowledge that Part II sort of originates in Todd Morra’s thesis.
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CHAPTER II.A

Preliminaries

chapter062921a

It will be assumed that the reader is already familiar with introductory-level abstract algebra as well as
the following definitions and results. Assume R is a commutative ring with identity throughout.

II.A.1. Exact Sequences and Projective Modules
section062921f

Some basic properties of modules and (short) exact sequences will be essential in this book, so we present
a number of them here.

def091517a Definition II.A.1.1. Let M1, M2, and M3 be R-modules. Then a sequence of R-module homomor-
phisms

M1
f // M2

g // M3

is exact if Im f = Ker g. More generally, a sequence of R-module homomorphisms

. . .
di+1 // Xi

di // Xi−1

di−1 // . . .

is exact if Im di+1 = Ker di, for all relevant i.

fac091517b Fact II.A.1.2. Let U , V , W be R-modules.

fac091517b.a (a) The following sequence is exact if and only if α is injective.

0
ε // U

α // V

fac091517b.b (b) The following sequence is exact if and only if β is surjective.

V
β // W

ρ // 0

fac091517b.c (c) The following sequence is exact if and only if α is injective, β in surjective, and Imα = Kerβ.

0 // U
α // V

β // W // 0

Proof. By Definition II.A.1.1, the sequence is exact if and only if kerα = Im ε = {0}, which proves
(a). Part (b) also holds by Definition II.A.1.1, since the sequence is exact if and only if Imβ = ker ρ = W .
Part (c) is a corollary of parts (a) and (b). �

091517c Definition II.A.1.3. When the sequence in Fact II.A.1.2c above is exact, it is a short exact sequence.

ex092918a Example II.A.1.4. If M and N are R-modules, then so is M ⊕N . We claim the sequence

0 // M
ε // M ⊕N π // N // 0

is a short exact sequence, where ε and π are the natural injection and surjection, respectively. To see this,
let (m,n) ∈ M ⊕ N . Then π(m,n) = 0 if and only if n = 0, which holds if and and only if (m,n) ∈ Im ε.
Therefore the sequence is exact in the center. By Fact II.A.1.2(c), the given sequence is a short exact
sequence since ε and π are injective and surjective, respectively.

091517d Fact II.A.1.5. Let A, B, C be R-modules.

091517d.a (a) The following sequence is exact if and only if α is an isomorphism.

0 // A
α // B // 0

091517d.b (b) The following sequence is exact if and only if C is the zero module.

0 // C // 0

10
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Proof. Both parts follow from Fact II.A.1.2. For part a, note α is injective if and only if the sequence
is exact and α is surjective if and only if the sequence is exact. For part b, note the sequence is exact if and

only if the map 0 // C is surjective, i.e., if and only if C = 0. �

091517e Definition II.A.1.6. Let

0 // A
f // B

g // C // 0

and

0 // A′
f ′ // B′

g′ // C ′ // 0

be two short exact sequences. A homomorphism of short exact sequences is a commutative diagram

0 // A
f //

α

��
�

B
g //

β

��
�

C //

γ

��

0

0 // A′
f ′
// B′

g′
// C ′ // 0

where α, β, and γ are R-module homomorphisms. The homomorphism is an isomorphism if α, β, and γ
are isomorphisms. This is an equivalence if A = A′, C = C ′, α = idA, and γ = idC . That is, we have
equivalence if our diagram can be written

0 // A
f //

idA
��
�

B
g //

β

��
�

C //

idC
��

0

0 // A
f ′
// B′

g′
// C // 0

Note in this case β is necessarily an isomorphism (see Fact II.A.1.9).

091517f Fact II.A.1.7. Given any R-module homomorphism g : A −→ B, there exists an exact sequence

0 // Ker g
ε // A

g // B
τ // Coker (g) // 0

where ε is the natural injection, τ is the natural surjection, and

Coker (g) :=
B

Im g

091517g Definition II.A.1.8. Given R-modules A, B, and C, the short exact sequence

0 // A
ψ // B

φ // C // 0

is said to be split if there is an R-module complement to ψ(A) in B. In this case B ∼= A⊕C, or to be precise,
B = ψ(A)⊕ C ′ where C ′ ⊆ B is a submodule and φ(C ′) ∼= C. The module B is said to be a split extension
of C by A.

An equivalent definition is to say that the above short exact sequence splits if there exists an equivalence

0 // A
ε //

idA ∼=
��

�

A⊕ C

Γ ∼=
��

ρ //

�

C

idC ∼=
��

// 0

0 // A
ψ
// B

φ
// C // 0

where ε and ρ are the natural injection and surjection, respectively.

fact011818a Fact II.A.1.9. In the following commutative diagram with exact rows and with isomorphisms α and γ,
the R-module homomorphism β must be an isomorphism.

0 // A
f //

α ∼=
��

�

B
g //

β

��
�

C //

γ ∼=
��

0

0 // A′
f ′
// B′

g′
// C ′ // 0



II.A.1. EXACT SEQUENCES AND PROJECTIVE MODULES 12

Proof. To show β is injective, let b ∈ ker(β) be given and we want to show b = 0. By the commutivity
of the diagram, 0 = g′(β(b)) = γ(g(b)), so g(b) ∈ ker(γ) = {0}. Since b ∈ ker(g) = Im f , let a ∈ A such that
f(a) = b. By the commutivity of the diagram, f ′(α(a)) = β(f(a)) = β(b) = 0, so α(a) ∈ ker(f ′) = {0}.
Since α is injective, a = 0 and therefore b = f(a) = 0.

To show β is surjective, let b′ ∈ B′ be given and we want to find a lift of this element in B. Since both γ
and g are surjective, let b ∈ B such that (γ ◦ g)(b) = g′(b′). By the commutivity of the diagram it also holds
that (g′ ◦ β)(b) = g′(b′), so the element b′ − β(b) ∈ ker(g′). Since the rows are exact and α an isomorphism,
we may lift to some a ∈ A such that (f ′ ◦ α)(a) = b′ − β(b) and the commutivity of the diagram implies
(β ◦ f)(a) = b′ − β(b), whereby we conclude

β(f(a) + b) = (β ◦ f)(a) + β(b) = b′

as desired. �

091517h Fact II.A.1.10. A short exact sequence as in Definition II.A.1.8 splits if and only if there exists an R-
module homomorphism µ : C −→ B such that φ◦µ = idC . In this case, µ is called a splitting homomorphism
for the sequence.

Proof. First assume an equivalence of short exact sequences exists as in Definition II.A.1.8 and define

µ : C // B

c � // Γ(0, c).

This is a well-defined R-module homomorphism because Γ is a well-defined R-module homomorphism. For
an arbitrary element c ∈ C, the commutativity of the diagram gives

(φ ◦ µ)(c) = (φ ◦ Γ)(0, c) = (idC ◦ρ)(0, c) = c.

Second, assume instead there exists a homomorphism µ : C // B such that φ ◦ µ = idC (see Defini-

tion II.A.1.8). Define the following map.

Γ : A⊕ C // B

(a, c)
� // ψ(a) + µ(c)

Since both ψ and µ are well-defined R-module homomorphisms, so is Γ. Moreover for any a ∈ A, we have

(Γ ◦ ε)(a) = Γ(a, 0) = ψ(a)

and for any (a, c) ∈ A⊕ C we have

(φ ◦ Γ)(a, c) = φ(ψ(a) + µ(c)) = (φ ◦ ψ)(a) + (φ ◦ µ)(c) = 0 + c = (idC ◦ρ)(a, c).

Therefore the diagram commutes. By Fact II.A.1.9, Γ is also an isomorphism, so the bottom row is split. �

def082118c Definition II.A.1.11. Let R be a ring, let C be an R-module, and let A ⊆ C be a submodule. We say
A is a direct summand of C if there exists some R-submodule B ⊆ C such that C = A⊕B.

def082118e Definition II.A.1.12. A category consists of a collection of objects, a collection of morphisms for each
pair of objects, and a binary operation on pairs of morphisms called composition (provided the morphisms
have compatible domain and codomain). A functor is a map between categories that respects compositions

and identity morphisms. A functor F is covariant if a morphism φ : A // B becomes

F (φ) : F (A) // F (B) .

A functor G is contravariant if the morphism becomes

G(φ) : G(B) // G(A) .

rmk110218a Remark II.A.1.13. Contravariant and covariant functors respect compositions differently. Let γ, ρ, and
ϕ be morphisms in the same category such that ϕ = γ ◦ ρ and let F and G be covariant and contravariant
functors, respectively, on this category. Then F (ϕ) = F (γ) ◦ F (ρ) and G(ϕ) = G(ρ) ◦G(γ). In particular, if
γ ◦ ρ = 0, then F (γ) ◦ F (ρ) = 0 and G(ρ) ◦G(γ) = 0.

091517i Definition II.A.1.14. An R-module P is projective if it satisfies any one (and therefore all) of the
following equivalent conditions.
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091517i.a (a) The covariant functor HomR(P,−) is exact. That is, for any R-modules L, M , and N , the exactness of
the sequence

0 // L
ψ // M

φ // N // 0

implies the following sequence is also exact.

0 // HomR(P,L)
ψ
′

// HomR(P,M)
φ
′

// HomR(P,N) // 0

ρ � // ψ ◦ ρ γ � // φ ◦ γ

091517i.b (b) For any R-modules M and N , if M
φ // N // 0 is exact, then every R-module homomorphism

from P into N lifts to an R-module homomorphism into M . In other words, given f ∈ HomR(P,N)
there is a lift F ∈ HomR(P,M) making the following diagram commute.

P

f

��

∃F
�~~

M
φ
// N // 0

091517i.c (c) For any R-module M , if P is isomorphic to a quotient of M (i.e., P ∼= M/M ′ for some submodule
M ′ ⊆M), then P is isomorphic to a direct summand of M .

091517i.d (d) Every short exact sequence 0 // L // M // P // 0 splits.
091517i.e (e) P is a direct summand of a free R-module.

def111017c Definition II.A.1.15. AnR-module I is injective if it satisfies any one (and therefore all) of the following
equivalent conditions.

def111017c.a (a) The contravariant functor HomR(−, I) is exact. That is, for any short exact sequence

0 // L
ψ // M

φ // N // 0

the following sequence is exact as well.

0 // HomR(L, I)
ψ′ // HomR(M, I)

φ′ // HomR(N, I) // 0

ρ
� // ψ ◦ ρ γ

� // φ ◦ γ

def111017c.b (b) For any R-modules X, Y and any R-module homomorphisms X �
� // Y and X // I , there exists

an R-module homomorphism h such that the following diagram commutes.

0 // X �
� f //

g

��

Y

∃h
�

~~
I

def111017c.c (c) For any R-module M , if I is isomorphic to a submodule I ′ ⊆M , then I ′ is a direct summand of M .

def111017c.d (d) Every short exact sequence 0 // I // M // K // 0 splits.

II.A.2. Localization
section062921g

We briefly look at the construction of localized rings and modules and their properties. Of particular
usefulness throughout this document will be the correspondence of prime ideals under localization given in
Fact II.A.2.11. Assume M and N are R-modules throughout this section.

091517j Definition II.A.2.1. A subset U ⊆ R is multiplicatively closed if 1 ∈ U and the product uv ∈ U for all
u, v ∈ U .

091517k Example II.A.2.2. For any element s ∈ R, the subset S = {sε | ε ∈ N0 } is multiplicatively closed. If
p � R is a prime ideal, then R \ p is multiplicatively closed as well.
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091517l Definition II.A.2.3. Let U ⊆ R be multiplicatively closed. We may define a relation on M × U : let
(m,u) ∼ (n, v) if there exists w ∈ U such that w(vm − un) = 0. One can show that this is an equivalence
relation. We therefore define

U−1M := {equivalence classes from M × U under ∼}

and denote the equivalence class (m,u) as
m

u
or m/u.

091517m Fact II.A.2.4. In general U−1M is an abelian group by the operations

m

u
+
n

v
:=

vm+ um

uv
0U−1M :=

0M
1R

=
0M
u
,

an R-module by the operation

r · m
u

:=
rm

u
,

and a U−1R-module by the operation
r

v
· m
u

:=
rm

vu
.

The special case when M = R gives a commutative ring U−1R with the following operations and identities.

m

u
+
n

v
:=

vm+ un

uv

m

u
· n
v

:=
mn

uv

0U−1R :=
0R
u

=
0R
1R

1U−1R :=
u

u
=

1R
1R

Moreover there exists a ring homomorphism

ψ :R −→ U−1R

r 7−→ r

1
=
ur

u
.

notn082318e Notation II.A.2.5. Let R× denote the collection of all units in R.

091517n Theorem II.A.2.6 (Universal Mapping Property). Let R and S be commutative rings with identity.
Given any ring homomorphism φ : R −→ S such that φ(U) ⊆ S×, there exists a unique ring homomor-

phism φ̃ : U−1R −→ S such that φ̃ ◦ ψ = φ. This is summed up by a commutative diagram.

U ⊆ R
ψ //

φ

����

�

U−1R

∃!φ̃zz
S× ⊆ S

091517o Example II.A.2.7. If R is an integral domain, then 0 � R is a prime ideal and R\{0} is multiplicatively
closed. We call (R \ {0})−1R the field of fractions of R, denoted Q(R), and (R \ {0})−1M is a vector space
over the field of fractions.

091517p Notation II.A.2.8. Recall Example II.A.2.2. If s ∈ R, then Ms := S−1M . If p � R is prime then
Mp := (R \ p)−1M . Notice that in the Ms case, the multiplicatively closed subset does contain the element
s, but in the Mp case, the multiplicatively closed subset does not contain p.

091517q Fact II.A.2.9. There is a one-to-one correspondence of prime ideals under this localization process. Ex-
plicitly, if U ⊆ R is a multiplicatively closed subset and ψ is the ring homomorphism from Theorem II.A.2.6,
then we have

{prime ideals of U−1R} // {prime ideals q � R | q ∩ U = ∅}oo

Q
� // ψ−1(Q) = {x ∈ R | ψ(x) ∈ Q}

(x/1 | x ∈ q)U−1R = q(U−1R) q
�oo
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and the isomorphic relations

U−1R

q(U−1R)
∼= U−1(R/q) (U−1R)q(U−1R) Rq

∼=oo

r/1

z/1

r

z
�oo

.

091517r Example II.A.2.10. Let p be a prime ideal. The correspondence for Rp under the description in
Fact II.A.2.9 is

{prime ideals of Rp}� {prime ideals q � R | q ⊆ p}
Rp

qRp

∼= (R/q)p

(Rp)qRp
∼= Rq

Considering the special case q = p, we have two ways of thinking about a field.

Rp

pRp

∼= (R/p)p ∼= Q(R/p)

Under the correspondence we know pRp is the unique maximal ideal of pRp, so on the left-hand side we have
a local ring modulo the unique maximal ideal, which must be a field. On the right-hand side, we have the
field of fractions on the integral domain R/p.

091517s Fact II.A.2.11. Given any R-module homomorphism f : M −→ N , this induces the following well-
defined U−1R-module homomorphism.

U−1f : U−1M −→ U−1N

m

u
7−→ f(m)

u

Proof. We need to check well-definedness and U−1R-linearity. If m/u,m′/u′ ∈ U−1M such that
m/u = m′/u′, then there exists some v ∈ U such that vu′m = vum′. Therefore

v · u′f(m) = f(vu′m) = f(vum′) = v · uf(m′)

which implies f(m)/u = f(m′)/u′, so U−1f preserves equality. Since it also lands well by construction, it is
well-defined. Letting m/u, x/w ∈ U−1M and r/u ∈ U−1R, we verify linearity as follows.

(U−1f)
(m
u

+
x

w

)
= (U−1f)

(
wm+ ux

uw

)
=
f(wm+ ux)

uw

=
w · f(m) + u · f(x)

uw

=
w · f(m)

uw
+
u · f(x)

uw

=
f(m)

u
+
f(x)

w

= (U−1f)
(m
u

)
+ (U−1f)

( x
w

)
(U−1f)

( r
u
· m
v

)
= (U−1f)

(rm
uv

)
=
f(rm)

uv

=
r · f(m)

uv

=
r

u
· f(m)

v

=
r

u
· (U−1f)

(m
v

)
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�

091517t Fact II.A.2.12. The operation U−1(−) is a covariant functor. Therefore it respects function composition
and U−1(idM ) = idU−1M .



CHAPTER II.B

Motivating Ext

chapter062921b
In this chapter we motivate our study of Ext modules by discussing three applications in abstract algebra.

We also give a few major results that will be explored more fully in later chapters.

II.B.1. Application 1: Long Exact Sequence
section062921h

Given a short exact sequence of R-modules and R-module homomorphisms

0 // M1
f1 // M2

f2 // M3
// 0

and given an R-module N , the induced sequence

0 // HomR(N,M1)
f1∗ // HomR(N,M2)

f2∗ // HomR(N,M3) (II.B.1.0.1) eqn082118d

is exact, where fi∗ denotes HomR(N, fi) and is defined as follows.

fi∗ : HomR(N,Mi) −→ HomR(N,Mi+1)

φ 7−→ fi ◦ φ

A similar sequence was seen previously in Definition II.A.1.10.
Here is demonstrated why we say Hom is left-exact. Writing the zero on the left in Equation (II.B.1.0.1)

maintains the exactness of the sequence. The contravariant sequence below is exact as well.

0 // HomR(M3, N)
f∗2 // HomR(M2, N)

f∗1 // HomR(M1, N)

Here f∗i functions analogously to fi∗ above.

f∗i : HomR(Mi+1, N) −→ HomR(Mi, N)

ψ 7−→ ψ ◦ fi

If we were to put the zero module on the right of either the covariant sequence or the contravariant
sequence, the exactness would fail in general at that point of the sequence. We can, however, compute
something else on the right for a longer exact sequence. This is one of the first great achievements of
homological algebra and the application from the title of this section. We will prove this in Section II.F.2
(see Theorem II.F.2.1).

091517v Theorem II.B.1.1 (Long Exact Sequences). Given the short exact sequence

0 // M1
f1 // M2

f2 // M3
// 0

and an R-module N as above, there exist exact sequences

0 // HomR(N,M1) // HomR(N,M2) // HomR(N,M3)

// Ext1
R(N,M1) // Ext1

R(N,M2) // Ext1
R(N,M3)

// Ext2
R(N,M1) // · · ·

17
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and

0 // HomR(M3, N) // HomR(M2, N) // HomR(M1, N)

// Ext1
R(M3, N) // Ext1

R(M2, N) // Ext1
R(M1, N)

// Ext2
R(M3, N) // · · ·

where ExtiR(−,−) will be defined after some discussion. We will simply say colloquially here that Ext1
R

measures the lack of right exactness of Hom.

091517w Discussion II.B.1.2. Given an R-module M , there exists a projective R-module P0 and a surjective

homomorphism P0
τ // // M, because every R-module is a homomorphic image of a projective R-module.

The sequence

P0
τ // // M // 0

can be thought of as approximating M by the projective module P0 where the error of the approximation is
Ker τ . The sequence can be lengthened into the short exact sequence

0 // Ker τ
� � ⊆ // P0

τ // // N // 0 .

The R-module Ker τ can likewise be approximated by a projective R-module. That is there exists a sequence

P1
τ1 // // Ker τ // 0

and the short exact sequence

0 // Ker τ1
� � ⊆ // P1

τ1 // // Ker τ // 0 .

Inductively there exists a short exact sequence

0 // Ker τi
� � ⊆ // Pi

τi // // Ker τi−1
// 0

for any i ≥ 2, giving us diagram (II.B.1.5.1). Moreover, a standard diagram chase shows the infinite sequence

. . . // P4

∂P4 // P3

∂P3 // P2

∂P2 // P1

∂P1 // P0
τ // M // 0

is exact by virtue of the exactness of the short exact sequences that compose it, as we show next.

Proof. For any i ≥ 1 we want to show Im ∂Pi+1 = Ker ∂Pi by mutual containment. For any b ∈ Im ∂Pi+1,

there exists some a ∈ Pi+1 such that ∂Pi+1(a) = b and by the commutivity of diagram (II.B.1.5.1), b =

τi+1(a) ∈ Ker τi, so τi(b) = 0. Again by the commutivity of the diagram ∂Pi (b) = 0, so b ∈ Ker ∂Pi and thus
Im ∂Pi+1 ⊆ Ker ∂Pi .

For any d ∈ Ker ∂Pi , the commutivity of the diagram implies d ∈ Ker τi. Since τi+1 surjective we let
c ∈ Pi+1 such that τi+1(c) = d and by the commutivity of the diagram ∂Pi+1(c) = d, so d ∈ Im ∂Pi+1 and

therefore Ker ∂Pi ⊆ Im ∂Pi+1, which establishes equality. The proof at the i = 0 step using τ is just as
straightforward. �

From this construction we define some new notation.

091517x Definition II.B.1.3. EveryR-moduleM has an associated exact sequence, called an augmented projective
resolution,

P+
• = · · · // P4

∂P4 // P3

∂P3 // P2

∂P2 // P1

∂P1 // P0
τ // M // 0

where each module Pi is projective and τ is a surjection, an associated (truncated) projective resolution (not
typically exact),

P• = · · · // P4

∂P4 // P3

∂P3 // P2

∂P2 // P1

∂P1 // P0
// 0
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and an associated Hom sequence

P ∗• = HomR(P•, N) = 0 // P ∗0
(∂P1 )

∗

// P ∗1
(∂P2 )

∗

// P ∗2
(∂P3 )

∗

// P ∗3
(∂P4 )

∗

// P ∗4 // · · · .

The maps ∂Pi are the differentials of the resolution.

091517y Fact II.B.1.4. In the notation of II.B.1.3, we have(
∂Pn+1

)∗ ◦ (∂Pn )∗ =
(
∂Pn ◦ ∂Pn+1

)∗
= 0∗ = 0.

In other words, since HomR(−, N) is a functor, we have Im ∂P∗i ⊆ Ker ∂P∗i+1 by Remark II.A.1.13.

091517z Definition II.B.1.5. Given a projective resolution of anR-moduleM in the notation of Definition II.B.1.3
and given an arbitrary R-module N , we define

ExtiR(M,N) =
Ker

(
∂Pi+1

)∗
Im
(
∂Pi
)∗ .

Colloquially,

ExtiR(M,N) =
Ker outgoing from ith position

Im incoming to ith position
.
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0

  

0

  

0
0

��

0

K
er
τ 4

⊆

  

K
er
τ 2

>>

⊆

  
�

K
er
τ

??

⊆

��
�

0

··
·

// P
4

∂
P 4

//

τ
4
  

P
3

τ
3

>> ∂
P 3

// P
2

∂
P 2

//

τ
2
  

P
1

τ
1

?? ∂
P 1

// P
0

τ
//

τ
��

M

CC

// 0

K
er
τ 3

⊆

>>   

�

K
er
τ 1

⊆

>>   

�

M

=

BB ��

�

0

>>

0
0

>>

0
0

AA

0

(II.B.1.5.1) eqn070118a
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091517aa Example II.B.1.6. Let N be an R-module. Then

ExtiR(R,N) ∼=

{
N i = 0

0 i 6= 0
.

Indeed, since R is projective (consider Definition II.A.1.14(e)), we have the augmented projective resolution
of R

P+
• = 0 // R

id // R // 0

which is exact by Fact II.A.1.5. The corresponding projective resolution is therefore

P• = 0 // R // 0 .

To compute Ext we need the following sequence HomR(P•, N):

0
f // HomR(R,N)

g // 0.

From position i = 0 we have

Ext0
R(R,N) =

Ker g

Im f
=

HomR(R,N)

0
∼= HomR(R,N) ∼= N

and for any i 6= 0 we have

ExtiR(R,N) =
0

0
∼= 0.

091517ab Note II.B.1.7. In general, if Pi = 0, then HomR(Pi, N) = 0 and therefore ExtiR(M,N) = 0.

notn082318f Notation II.B.1.8. For an R-module M and any r ∈ R, the multiplication map

µr : M // M

m � // rm

is a well-defined R-module homomorphism by the axioms for R- modules. Unless otherwise noted, we will
let µx denote a multiplication map by the element x.

091517av Lemma II.B.1.9. Consider a commutative diagram of R-modules and R-module homomorphisms

A
f //

α ∼=
��

�

B
g //

β ∼=
��

�

C

γ ∼=
��

A′
f ′
// B′

g′
// C

and assume g ◦ f = 0 (and consequently g′ ◦ f ′ = 0). Then there is a well-defined R-module isomorphism

β :
Ker g

Im f
−→ Ker g′

Im f ′

b+ Im f 7−→ β(b) + Im f ′.
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Proof. We give here only a sketch via a commutative diagram.

A
f //

α ∼=

��

f̃

!!

B
g //

β ∼=

��

C

γ ∼=

��

0 // Im f
⊆ //

  

∃β′′

��

Ker g
π //

⊆
<<

∃β′

��

Ker g
Im f

//

∴∃β ∼=

��

0

0

==

A′
f ′ //

f̃ ′

!!

B′
g′ // C ′

0 // Im f ′
⊆ //

  

Ker g′
π′ //

⊆
==

Ker g′

Im f ′
// 0

0

==

�

091517ac Example II.B.1.10. Let A be a non-zero commutative ring with identity and set R = A[x] and a = (x)R.
Note R/a ∼= A and therefore A is an R-module. Then we will show

ExtiR(A,R) ∼=

{
A i = 1

0 i 6= 1
ExtiR(A,A) ∼=

{
A i = 0, 1

0 else.

We begin with an augmented projective resolution of A from the diagram

0

��
0 // R

µx //

µx
��

R
τ // // R/a ∼= A

a

⊆

??

��
0

??

0

where µx is multiplication by x and τ is the natural surjection. Define P+
• to be the row from the above

diagram. Hence

P• = · · · // 0 // 0 // R
µx // R // 0

and

P ∗• = 0 //

∼=
��

HomR(R,R)
µ∗x //

∼=
��

HomR(R,R) //

∼=
��

HomR(0, R) //

∼=
��

· · ·

0
f // R

i=0

µx // R
i=1

g // 0
i=2

// · · ·

where the vertical isomorphisms are by Hom-cancellation. We can now calculate ExtiR(A,R) from the bottom
row of this diagram because of Lemma II.B.1.9.

ExtiR(A,R) =


0/0 = 0 i 6= 0, i 6= 1

Kerµx/ Im f = 0/0 i = 0

Ker g/ Imµx = R/a ∼= A i = 1
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We calculate ExtiR(A,A) similarly.

HomR(P•, A) ∼= 0
h // A

µAx

0
// A

k // 0 // 0 // · · ·

which implies that

ExtiR(A,A) =


0/0 = 0 i 6= 0, i 6= 1

KerµAx / Imh = A/0 ∼= A i = 0

Ker k/ ImµAx = A/0 ∼= A i = 1

Note in this case µAx is the zero map since ImµAx = a/a = {0} ⊂ R/a ∼= A.

One might wonder why we did not write Ext0
R(N,M`) in Example II.B.1.1, so here we give a reason in

the form of a proposition.

091517ad Proposition II.B.1.11. For any two R-modules M and N

Ext0
R(M,N) ∼= HomR(M,N).

Proof. Let M and N be two R-modules and let

P+
• = . . . // P4

∂P4 // P3

∂P3 // P2

∂P2 // P1

∂P1 // P0
τ // M // 0

be an augmented projective resolution of M . Since Hom is left-exact, the following piece of the sequence
HomR(P+

• , N) is exact as well.

0 // HomR(M,N)
τ∗ // HomR(P0, N)

(∂P1 )
∗

// HomR(P1, N)

This exactness yields

Ker ∂P∗1 = Im τ∗
(1)∼=

HomR(M,N)

Ker τ∗
(2)
=

HomR(M,N)

{0}
∼= HomR(M,N)

where (1) holds by the First Isomorphism Theorem and (2) holds since

Ker τ∗ = Im 0 // HomR(M,N) = {0}.

On the other hand, from the definition of Ext we have

Ext0
R(M,N) =

Ker
(
∂P1
)∗

Im 0→ HomR(P0, N)
=

Ker
(
∂P1
)∗

{0}
∼= Ker

(
∂P1
)∗
.

�

prop110417k Proposition II.B.1.12. Given R-modules and a projective resolution as in the above discussion, we
have the following.

(a) ExtiR(M,N) = 0 for all i < 0
(b) ExtiR(M, 0) = 0 for all i ∈ Z
(c) ExtiR(0, N) = 0 for all i ∈ Z

Proof. (a) We have (P ∗• )i = 0 for all i < 0. Therefore (∂Pi )∗ : 0 // 0 for all i < 0 and (∂P0 )∗ : 0 // P ∗0 .

It follows that

ExtiR(M,N) =
Ker (∂Pi+1)∗

Im (∂Pi )∗
=

0

0
= 0

for all i < 0.

(b) For any i ∈ Z we have
HomR(P•, 0)−i = HomR(Pi, 0) = 0.

Then (∂Pi )∗ : 0 // 0 and therefore

ExtiR(M, 0) =
0

0
= 0

for all i ∈ Z.
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(c) We can define a projective resolution of the R-module M = 0.

P+
• = P• = · · · // 0 // 0 // · · ·

Therefore

HomR(P•, N)−i = HomR(0, N) = 0

for all i ∈ Z and hence

ExtiR(0, N) =
0

0
= 0

again for all i ∈ Z. �

091517ae Fact II.B.1.13. Ext is well-defined. That is, the calculation of ExtiR(M,N) is independent (up to iso-
morphism) of our choice of projective resolution of M .

Establishing the Fact II.B.1.13 is the main point of Chapter II.F. See Theorem II.F.5.2.

II.B.2. Application 2: Depth
section062921i

Depth is a nice tool on which to perform induction arguments. One thing that makes it so versatile is
that it has strong ties to Ext modules.

091517af Definition II.B.2.1. Let M be an R-module. An element x ∈ R is a non-zero-divisor on M if the

sequence 0 // M
µx // M is exact (i.e., for all m ∈M , xm = 0 implies m = 0). We say x is M-regular

if x is a non-zero-divisor on M and xM 6= M (i.e., M/xM 6= 0). A sequence x = x1, . . . , xn ∈ R is M-regular
if x1 is M -regular and xi is M/(x1, . . . , xi−1)M -regular for all i = 2, . . . , n.

091517ah Fact/Definition II.B.2.2. Let R be noetherian and a ≤ R an ideal such that aM 6= M . Then there
exists a maximal M -regular sequence in a. That is, there exists an M -regular sequence x = x1, . . . , xn ∈ a
such that for all y ∈ a, the sequence x1, . . . , xn, y is not M -regular. The longest length n of an M -regular
sequence in a is called the depth of a on M , denoted

n = depth(a,M).

091517ai Fact II.B.2.3. Depth is independent of our choice of maximal M -regular sequence as long as M is
finitely generated. The proof of this fact requires Ext. One proves there exists some n ∈ N0 such that
ExtiR(R/a,M) = 0 whenever 0 ≤ i ≤ n− 1 and ExtnR(R/a,M) 6= 0, in order to conclude

depth(a,M) = inf
{
i ≥ 0

∣∣ ExtiR(R/a,M) 6= 0
}
.

Establishing Fact II.B.2.3 is the goal of Chapter II.C. See Theorem II.C.5.16.

II.B.3. Application 3: Localization Problem for Regular Local Rings
section062921j

Here we introduce regular rings. The question of whether regularity is preserved under localization
(Question II.B.3.7) was one of the great open questions solved using homological methods. We give an
answer immediately in Theorem II.B.3.8, which is seen again later (Theorem II.G.4.11). Throughout the
section assume (R,m,K) is a local, noetherian ring. That is, assume m is the unique maximal ideal and
K ∼= R/m.

091517aj Definition II.B.3.1. The Krull dimension, or just dimension, of R can be said to measure the size of
R and is defined

dim(R) = sup {n ≥ 0 | ∃ p0 ( p1 ( · · · ( pn ( R s.t. pi prime,∀ i = 1, . . . , n} .
Under our local and noetherian assumptions, Krull dimension is finite.

091517ak Definition II.B.3.2. The embedding dimension is defined as the dimension of a particular R-module
as a K-vector space.

edim(R) = dimK(m/m2)

Since m/m2 is an R-module satisfying m·(m/m2) = 0, it is also an R/m-module. That is, it is a K-vector space
(since K a field) and moreover since R is noetherian, m/m2 is finitely generated over R and is consequently
a finite dimensional vector space over K. In summary, the noetherian assumption on R again guarantees a
finite dimension.
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091517al Theorem II.B.3.3. One has

depth(m, R)
(1)

≤ dim(R)
(2)

≤ edim(R).

091517am Definition II.B.3.4. R is Cohen-Macauley if (1) is an equality and R is regular if (2) is an equality.

091517an Fact II.B.3.5. Every regular ring is Cohen-Macaulay.

091517ao Example II.B.3.6. For the localization ring

R = K[x1, . . . , xn](x1,...,xn)

with unique maximal ideal m = (x1, . . . , xn)R, we have dim(R) = n and edim(R) = n, so the ring is regular
and one can think of R as the geometric object Kn (e.g., Rn or Cn). There is more on the construction of
localization rings in the preliminaries.

In many ways the quotient ring

R0 =
R[x, y]

(y2 − x2(x+ 1))

represents the curve y2 = x2(x+ 1), which we plot in the Cartesian coordinate plane below. This plot tells
us a number of things about the ring R0, though none of them are necessarily obvious.

(a, b)

• Points p = (a, b) on the curve correspond to maximal ideals mp = (x − a, y − b)R0 and the local
ring (R0)mp has the maximal ideal (x− a, y − b)(R0)mp .

• All rings (R0)mp have Krull dimension 1, because the curve is 1-dimensional.
• If p is a smooth point of the curve, then the ring (R0)mp is regular.
• edim((R0)mp) = dimR(tangent space at p).
• At the origin p = (0, 0), edim((R0)mp) = 2 and therefore (R0)mp is not regular.
• The localization in this example can be thought of as zooming in on some neighborhood of your

point, so it should at least not make the singularity worse.

An important question from the early 1900’s asked if regularity is preserved under localization, which is
meaning of this section.

091517ap Question II.B.3.7. If R is regular and p � R is prime, must Rp necessarily be regular as well?

It turns out that the answer is ‘yes’. This is highly nontrivial because while one can exert some control
from dim(R) to dim(Rp), controlling edim(Rp) is harder and requires homological algebra. The essential
point is in the following theorem.

091517aq Theorem II.B.3.8 (Auslander, Buchsbaum, Serre). The following are equivalent.

(a) R is regular.
(b) For any two finitely generated modules M and N , ExtiR(M,N) = 0 for all i > dim(R).

(c) Ext
dim(R)+1
R (K,K) = 0.

(d) There exists some d ≥ 0 such that ExtdR(K,K) = 0.

The proof of this result, unfortunately, is outside the scope of this book.

Exercises

exer170827a Exercise II.B.3.9. Let A be a non-zero commutative ring with identity, and set R = A[x, y], the
polynomial ring over A on two variables. Set a = (x, y)R ⊆ R, and note that R/a ∼= A. in particular, A is
an R-module.
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item170828a (a) Prove that the following sequence is exact

0→ R
(
y
−x )
−−−−→ R2 ( x y )−−−−→ R

τ−→ A→ 0

where τ is the natural surjection.
item170828b (b) Use the exact sequence from part (a) with the isomorphism HomR(R, ∗) ∼= ∗ to prove that

ExtiR(A,R) ∼=

{
0 for i 6= 2

A for i = 2

ExtiR(A,A) ∼= A(2
i) for all i

item170828c (c) Prove that Ext0
R(A,R) = 0 = HomR(A,R) and Ext0

R(A,A) ∼= A ∼= HomR(A,A).
item170828d (d) Compute depthR(a;R) and depthR(a, A).

exer170828a Exercise II.B.3.10. Let R be a non-zero commutative ring with identity, and let M be an R-module.
Prove that the following conditions are equivalent.

exer170828a1 (i) Every submodule of M is finitely generated over R.
exer170828a2 (ii) (ACC on submodules) Every chain M1 ⊆M2 ⊆M3 ⊆ · · · ⊆M of R-submodules stabilizes, that is, for

every such chain there is an integer n such that Mn = Mn+1 = Mn+2 = · · · .
exer170828a3 (iii) (maximum condition) Every nonempty set S of R-submodules of M has a maximal element (with

respect to set inclusion), that is, there is an element N ∈ S such that for all N ′ ∈ S if N ⊆ N ′, then
N = N ′.

If M satisfies these equivalent conditions, then M is a noetherian R-module. (Hint: model your proof on
the proof of the corresponding result for rings and ideals.) Observe that R is a noetherian ring if and only
if R is noetherian as an R-module.

exer170828b Exercise II.B.3.11. Let R be a non-zero commutative ring with identity. Consider an exact sequence

0→M ′
f−→M

g−→M ′′ → 0

of R-modules and R-module homomorphisms. Prove that M is noetherian over R if and only if M ′ and M ′′

are noetherian over R.

exer170828c Exercise II.B.3.12. Let R be a non-zero commutative ring with identity. Use Exercise II.B.3.11 to
show that the following conditions are equivalent for an R-module M :

(i) M is noetherian over R,
(ii) Mn is noetherian over R for all n ∈ N = {1, 2, 3 . . .}, and
(iii) Mn is noetherian over R for some n ∈ N.

exer170828d Exercise II.B.3.13. Let R be a non-zero commutative ring with identity. Use Exercise II.B.3.12 to
show that the following conditions are equivalent.

(i) R is a noetherian ring,
(ii) Rn is noetherian over R for all n ∈ N = {1, 2, 3 . . .}, and
(iii) Rn is noetherian over R for some n ∈ N.

exer170828e Exercise II.B.3.14. Let R be a non-zero commutative noetherian ring with identity, and let M be an
R-module. Use the above exercises to show that the following conditions are equivalent.

(i) M is finitely generated over R.
(ii) M is noetherian over R.
(iii) M has a degree-wise finite free resolution, that is, there is an exact sequence

· · · → Rβ2 → Rβ1 → Rβ0 →M → 0

with each βi ∈ N0 = {0, 1, 2, 3, . . .}.



CHAPTER II.C

Depth by Ext

chapter062021c
In this chapter we build the tools we need to characterize depth in terms of Ext (Fact II.B.2.3), which

is given with proof as Theorem II.C.5.16 at the end of the chapter.

II.C.1. Hom and Direct Sums of Modules
section062921k

In this section we observe that direct sums of modules interact very intuitively with functors like
HomR(−, N) and U−1(−). We conclude the section by proving in Proposition II.C.1.8 that with a few
assumptions, the two functors interact with one another exactly as one might like them to.

091517at Fact II.C.1.1. If M and M ′ are two R-modules, then there is a split short exact sequence

0 // M
ε // M ⊕M ′
τ
jj

τ ′ // M ′ //

ε′
nn 0

where τ ◦ ε = idM and τ ′ ◦ ε′ = idM ′ , and we have

HomR(M ⊕M ′, N) ∼=
ω // HomR(M,N)⊕HomR(M ′, N)

ψ
� // (ψ ◦ ε, ψ ◦ ε′) = (ε∗(ψ), ε′∗(ψ))

Proof. Applying HomR(−, N) to the split exact sequence above we get

0 // HomR(M ′, N)
τ ′∗ // HomR(M ⊕M ′, N)

ε∗ // HomR(M,N)

τ∗

kk
// 0 (II.C.1.1.1) eqn082218e

tacking on a zero on the right-hand side. We claim this is a short exact sequence. Indeed since Hom is
left-exact and

ε∗ ◦ τ∗ = (τ ◦ ε)∗ = (idM )∗ = idHomR(M,N)

we know ε∗ is surjective and therefore (II.C.1.1.1) is a short exact sequence.
From here we can take one of two approaches to reach the desired conclusion. On the one hand, note

that we now have a split exact sequence in (II.C.1.1.1), so the desired isomorphism follows immediately from
the definition of a split sequence in Definition II.A.1.8. On the other hand, we can also prove directly that
the map ω is an isomorphism as follows.

27
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We claim the following is a homomorphism of short exact sequences, for which it suffices to show ω
is a well-defined R-module homomorphism and the proposed maps make the diagram commute. This will
complete the proof by the Short-Five Lemma.

0 //

=
��

HomR(M ′, N)
τ ′∗ //

= �� �?

HomR(M ⊕M ′, N)
ε∗ //

ω�� �?

HomR(M,N) //

=��

0
=
��

0 // HomR(M ′, N)
E′
// HomR(M,N)⊕HomR(M ′, N)

T
// HomR(M,N) // 0

α � E′ // (0, α)

(β, γ) � T // β

For an arbitrary pair of elements ψ1, ψ2 ∈ HomR(M ⊕M ′, N) and for any r ∈ R we have

ω(rψ1 + ψ2) = ((rψ1 + ψ2) ◦ ε , (rψ1 + ψ2) ◦ ε′)
= ((rψ1) ◦ ε+ ψ2 ◦ ε , (rψ1) ◦ ε′ + ψ2 ◦ ε′)
= (r(ψ1 ◦ ε) + ψ2 ◦ ε , r(ψ1 ◦ ε′) + ψ2 ◦ ε′)
= (r(ψ1 ◦ ε) , r(ψ1 ◦ ε′)) + (ψ2 ◦ ε , ψ2 ◦ ε′)
= r(ψ1 ◦ ε , ψ1 ◦ ε′) + (ψ2 ◦ ε , ψ2 ◦ ε′)
= r · ω(ψ1) + ω(ψ2)

Thus ω is a well-defined R-module homomorphism. Consider an arbitrary α ∈ HomR(M ′, N) and we have

(ω ◦ τ ′∗)(α) = ω(α ◦ τ ′) = (α ◦ τ ′ ◦ ε, α ◦ τ ′ ◦ ε′) (1)
= (α ◦ 0, α ◦ idM ′) = (0, α) = E′(α)

where (1) holds since Im ε = ker(τ ′). Now taking an arbitrary ψ ∈ HomR(M ⊕M ′, N) we have

(T ◦ ω)(ψ) = T (ψ ◦ ε, ψ ◦ ε′) = ψ ◦ ε = ε∗(ψ).

So the diagram commutes and ω must be an isomorphism by the Short-Five Lemma. �

091517au Example II.C.1.2. Using II.C.1.1 as a base case, one can prove inductively that

HomR

(
n⊕
i=1

Mi, N

)
−→

n⊕
i=1

HomR(Mi, N)

ψ 7−→

ε
∗
1(ψ)
...

ε∗n(ψ)


is an isomorphism, where εj : Mj

//⊕n
i=1Mi is the standard injection. In particular the map

ωn : HomR(Rn, R) −→ Rn

ψ 7−→

ψ(e1)
...

ψ(en)


is an isomorphism, where e1, . . . , en ∈ Rn is the standard basis for Rn. Note in this case the base case is
simply Hom-cancellation, i.e., HomR(R,R) ∼= R. Moreover, if we let v1, . . . , vm ∈ Rm be the standard basis
vectors of Rm, let e∗1, . . . , e

∗
n and v∗1 , . . . , v

∗
m be the respective dual basis vectors, and let φ : Rm −→ Rn be an

R-module homomorphism represented by a matrix A, where the jth column of A is φ(vj), then HomR(−, R)
yields

{e∗1, . . . , e∗n} ⊂ HomR(Rn, R)
φ∗ //

∼= ωn

��
�

HomR(Rm, N) ⊃ {v∗1 , . . . , v∗m}

∼=ωm

��
{e1, . . . , en} ⊂ Rn

AT
// Rm ⊃ {v1, . . . , vm}.
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One can prove the diagram commutes using the basis vectors and the dual basis vectors, which in conjunction
with linearity, proves the entire diagram commutes. The first direction looks like

(ωm ◦ φ∗)(e∗i ) = ωm(e∗i ◦ φ) =

 (e∗i ◦ φ)(v1)
...

(e∗i ◦ φ)(vm)

 (2)
=

ai1
...
aim

 =
(
ith row of A

)T
where (2) holds since e∗i (φ(vj)) is simply e∗i applied to the jth column of A, which is aij . The second direction
looks like

(AT ◦ ωn)(e∗i ) = AT ·



e∗i (e1)
...

e∗i (ei)
...

e∗i (en)

 = ith column of (AT ).

Therefore the diagram commutes.

We now state an even more general version of Fact II.C.1.1 without proof.

fact082218a Fact II.C.1.3. For a direct sum of an arbitrary collection of R-modules, denoted
⊕
λ∈Λ

Mλ, we have

HomR

(⊕
λ∈Λ

Mλ, N

)
∼=
∏
λ∈Λ

HomR(Mλ, N).

091517ar Theorem II.C.1.4. The functor U−1(−) is exact, i.e., U−1(−) respects short exact sequences (and there-
fore exact sequences).

Proof. Let

0 // M
f // N

g // P // 0

be a short exact sequence and consider

0 = U−10 // U−1M
U−1f // U−1N

U−1g // U−1P // U−10 = 0 .

First, and most straightforward to show, is the containment ImU−1f ⊆ KerU−1g.

(U−1g) ◦ (U−1f) = U−1(g ◦ f) = U−10 = 0

Second, to verify the reverse containment we let n/u ∈ KerU−1g and show it has a preimage under
U−1f . Residing in the kernel implies g(u)/n = 0, i.e., there exists some v ∈ U such that 0 = v ·g(n) = g(vn).
Since Ker g ⊆ Im f , we have f(m) = vn for some m ∈M and we consider the element m/uv ∈ U−1M .

(U−1f)
(m
uv

)
=
f(m)

uv
=
vn

uv
=
n

u

Third, we want to show U−1f is injective. Let m/u ∈ KerU−1f and similar to the previous part this
implies there exists some v ∈ U such that v · f(m) = 0. This also implies f(vm) = v · f(m) = 0 and since f
is injective, vm = 0. Therefore we have

m

u
=
vm

vu
=

0

vu
= 0.

So U−1f has trivial kernel and is therefore injective.
Finally, let p/u ∈ U−1P and note p = g(n) for some n ∈ N since g is surjective. The immediate

implication is
p

u
=
g(n)

u
= U−1g

(n
u

)
∈ ImU−1g

Hence U−1(−) preserves short exact sequences. To expand to the arbitrary sequence suppose

X
φ // Y

ψ // Z

is exact. Around this sequence we build four short exact sequences as in Diagram (II.C.1.6.1). The point
in this construction is applying U−1(−) to it will preserve commutivity of the diagram and exactness of
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the diagonals. Then a standard diagram chase (omitted) shows the exactness of the row in which we are
interested is also preserved. �

091517aw Fact II.C.1.5. We have results similar to those in Fact II.C.1.1 and Example II.C.1.2 for localizations.
For U ⊆ R a multiplicatively closed set and for R-modules M and M ′ we have the following isomorphism.

U−1(M ⊕M ′)
∼= // U−1(M)⊕ U−1(M ′)

(m,m′)

u
� //

(
m

u
,
m′

u

)
(u′m,um′)

uu′

(
m

u
,
m′

u′

)
=

(
u′m

uu′
,
um′

uu′

)
�oo

More generally we write

U−1

(
n⊕
i=1

Mi

)
∼= //

n⊕
i=1

U−1Mi

m1

...
mn

/u � //

m1/u
...

mn/u



Remark II.C.1.6. Replacing Mi above with copies of R shows that the notation U−1Rn is not ambigu-
ous, because U−1(Rn) is isomorphic to (U−1R)n. Thus homomorphisms between modules in the form of the
former induce homomorphisms between modules in the form of the latter. We summarize this relationship
in the following commutative diagram, where (aij) is an n×m matrix over R.

U−1(Rm)
U−1(aij) //

∼=
��

�

U−1(Rn)

∼=
��

(U−1R)m
(aij/1)

// (U−1R)n
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0

!!

0
0

##

0

K
er
ψ

i

��??

�

Im
ψ

=
K

er
p

k

##;;

�

0

0
// K

er
φ

=

==

i
// X

φ
//

φ̃
##

Y

ψ̃

;;

ψ
// Z

p
//

p
!!

C
o
ke

r
(ψ

)

>>

// 0

0

AA

K
er
ψ

=
Im

φ

j

;; ##

�

C
o
ke

r
(ψ

)

=

99

%%

�

0

;;

0
0

==

0

(II.C.1.6.1) eqn082218c
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091617a Definition II.C.1.7. An R-module M is finitely presented if there exists an exact sequence

Rm
f // Rn

g // M // 0 .

091617b Proposition II.C.1.8. Let R be a non-zero commutative ring with identity, let M and N be R-modules,
and let U ⊆ R be a multiplicatively closed subset.

091617b.a (a) For all φ/u ∈ U−1 HomR(M,N), the map φu below is a well-defined U−1R-module homomorphism.

φu : U−1M // U−1N

m/v � // φ(m)/(uv)

091617b.b (b) The function ΘU,M,N below is a well-defined U−1R-module homomorphism.

ΘU,M,N : U−1 HomR(M,N) // HomU−1R

(
U−1M,U−1N

)
φ/u � // φu

091617b.c (c) If M is finitely presented, then ΘU,M,N is an isomorphism.
091617b.d (d) If R is noetherian and M is finitely generated, then

HomU−1R

(
U−1M,U−1N

) ∼= U−1 HomR(M,N)

as U−1R-modules (via ΘU,M,N ).

Proof. (a) We prove this part in two steps. First let u ∈ U and φ ∈ HomR(M,N). For any m/v ∈
U−1M we have

φu

(m
v

)
=
φ(m)

uv
=

1

u
· (U−1φ)

(m
v

)
= (µ 1

u
◦ U−1φ)

(m
v

)
where µ1/u is the standard product map (see Example II.B.1.10). Thus φu is the composition of two well-

defined U−1R-module homomorphisms, so it is itself a well-defined U−1R-module homomorphism. The
second question of well-definedness has to do with our choice of representative from U−1 HomR(M,N), so
let φ/u = φ′/u′. This means there exists some u′′ ∈ U such that uu′′φ′ = u′u′′φ, so for any m/v ∈ U−1M
we have

uu′′ · φ′(m) = (uu′′φ′)(m) = (u′u′′φ)(m) = u′u′′ · φ(m)

and therefore

φu

(m
v

)
=
φ(m)

uv
=
u′u′′φ(m)

u′u′′uv
=
uu′′φ′(m)

u′u′′uv
=
φ′(m)

u′v
= φ′u′

(m
v

)
.

(b) The well-definedness of ΘU,M,N is a consequence of part (a), so we need only show it is U−1R-linear. Let
φ/u, φ′/u′ ∈ U−1 HomR(M,N) be given and note that showing Θ respects sums is equivalent to showing

(u′φ+ uφ′)uu′ = φu + φ′u′

since
φ

u
+
φ′

u′
=
u′φ+ uφ′

uu′
.

To this end, for any m/v ∈ U−1M we have

(u′φ+ uφ′)uu′
(m
v

)
=

(u′φ+ uφ′)(m)

uu′v

=
(u′φ)(m) + (uφ′)(m)

uu′v

=
u′ · φ(m)

uu′v
+
u · φ′(m)

uu′v

=
φ(m)

uv
+
φ′(m)

u′v

= φu

(m
v

)
+ φ′u′

(m
v

)
.
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To complete the proof of part (b) let r/t ∈ U−1R be given and we observe for any m/v ∈ U−1M

ΘU,M,N

(
rφ

tu

)(m
v

)
= (rφ)tu

(m
v

)
=

(rφ)(m)

tuv

=
r

t
· φ(m)

uv

=
r

t
· φu

(m
v

)
=
r

t
·ΘU,M,N

(
φ

u

)(m
v

)
.

(c) We complete this part in four steps. First we claim ΘU,M⊕M ′,N is an isomorphism if and only if both
ΘU,M,N and ΘU,M ′,N are isomorphisms. We prove this by showing Diagram (II.C.1.8.3) of U−1R-modules
and homomorphisms commutes. To make clear some of our notation we define the following homomorphisms.

γ : U−1(M ⊕M ′) // (U−1M)⊕ (U−1M ′) γ−1 : (U−1M)⊕ (U−1M ′) // U−1(M ⊕M ′)

(m,m′)

v
� //

(
m

v
,
m′

v

) (
m

v
,
m′

v′

)
� // (v

′m, vm′)

vv′

Consider the map ω as defined in Fact II.C.1.1 and from the same fact, consider the standard injections ε
and ε′ along with the standard projections τ and τ ′, all of which we reproduce below.

ε : U−1M // (U−1M)⊕ (U−1M ′) ε′ : U−1M ′ // (U−1M)⊕ (U−1M ′)

m

u
� //

(m
u
, 0
) m′

u
� //

(
0,
m′

u

)

τ : (U−1M)⊕ (U−1M ′) // U−1M τ ′ : (U−1M)⊕ (U−1M ′) // U−1M ′(
m

u
,
m′

u′

)
� // m

u

(
m

u
,
m′

u′

)
� // m′

u′

The maps Γ and Ω will be defined implicitly in the diagram chase.
For any ψ/u ∈ U−1 HomR(M ⊕M ′, N) we have

ψ

u
� U−1ω // ω(ψ)

u
=

(ψ ◦ τ, ψ ◦ τ ′)
u

� Γ //
(
ψ ◦ τ
u

,
ψ ◦ τ ′

u

)
� ΘU,M,N⊕ΘU,M′,N // ((ψ ◦ τ)u, (ψ ◦ τ ′)u) .

(II.C.1.8.1) eqn012018i

Tracking along the other half of the diagram we find

ψ

u
� ΘU,M⊕M′,N // ψu

�(γ
−1)
∗

// ψu ◦ γ−1 � Ω // (ψu ◦ γ−1 ◦ ε, ψu ◦ γ−1 ◦ ε′) . (II.C.1.8.2) eqn012018j

Now it is a matter of showing the resulting maps in (II.C.1.8.1) and (II.C.1.8.2) are equivalent.
For any m/v ∈ U−1M and any m′/v′ ∈ U−1M ′, (II.C.1.8.1) produces(

(ψ ◦ τ)u

(m
v

)
, (ψ ◦ τ ′)u

(
m′

v′

))
=

(
(ψ ◦ τ)(m)

uv
,

(ψ ◦ τ ′)(m′)
uv′

)
=

(
ψ(m, 0)

uv
,
ψ(0,m′)

uv′

)
.
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and likewise (II.C.1.8.2) produces(
(ψu ◦ γ−1 ◦ ε)

(m
v

)
, (ψu ◦ γ−1 ◦ ε′)

(
m′

v′

))
=

(
ψu

(
γ−1

(m
v
, 0
))

, ψu

(
γ−1

(
0,
m′

v′

)))
=

(
ψu

(
γ−1

(
m

v
,

0

v

))
, ψu

(
γ−1

(
0

v′
,
m′

v′

)))
=

(
ψu

(
(m, 0)

v

)
, ψu

(
(0,m′)

v′

))
=

(
ψ(m, 0)

uv
,
ψ(0,m′)

uv′

)
Hence the diagram commutes and our first claim follows from a standard diagram chase.

Next we claim ΘU,⊕ni=1Mi,N is an isomorphism if and only if ΘU,Mi,N is an isomorphism for every
i = 1, . . . , n. The base case is our first claim, so assume our second claim holds for R-modules M1, . . . ,Mn−1

and let Mn be another R-module. By our first claim we have ΘU,⊕ni=1Mi,N is an isomorphism if and only if
both ΘU,⊕n−1

i=1 Mi,N
and ΘU,Mn,N are isomorphisms, so our second claim follows from our induction hypothesis.

Third we claim ΘU,Rn,N is an isomorphism, for which it suffices to show ΘU,R,N is an isomorphism (by
our second claim). Consider the diagram

U−1 HomR(R,N)
ΘU,R,N //

∼=U−1f

��

HomU−1R

(
U−1R,U−1N

)
F

∼=

ss
U−1N

where f and F are the evaluation maps at 1R and 1U−1R, respectively. The diagram commutes since for any
ψ
u ∈ U

−1 HomR(R,N) we have the following.

(U−1f)

(
ψ

u

)
=
f(ψ)

u
=
ψ(1)

u

(F ◦ΘU,R,N )

(
ψ

u

)
= F (ψu) = ψu(1) = ψu

(
1

1

)
=
ψ(1)

1 · u
Since the evaluation maps U−1f and F are known isomorphisms, a standard diagram chase shows ΘU,R,N

is an isomorphism also.
To finish the proof of part (c), assume the sequence

Rm
f // Rn

g // M // 0

is exact (f no longer an evaluation map). Since Hom is left-exact the sequence

0 // HomR(M,N)
g∗ // HomR(Rn, N)

f∗ // HomR(Rm, N)

is exact as well, where ∗ is defined as
(−)∗ := HomR(−, N).

Localization is also exact, so

0 // U−1 HomR(M,N)
U−1(g∗) //

ΘU,M,N

��
�

U−1 HomR(Rn, N)
U−1(f∗) //

ΘU,Rn,N∼=
��

�

U−1 HomR(Rm, N)

ΘU,Rm,N∼=
��

0 // HomU−1R

(
U−1M,U−1N

)
(U−1g)?

// HomU−1R

(
U−1Rn, U−1N

)
(U−1f)?

// HomU−1R

(
U−1Rm, U−1N

)
is a homomorphism of exact sequences, where the commutivity of the diagram is verified as above, the
isomorphisms therein follow from our third claim, and ? is defined as

(−)? := HomU−1R

(
−, U−1N

)
.

Another diagram chase allows us to conclude that ΘU,M,N is an isomorphism as desired, completing the
proof of (c).
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(d) Since R noetherian and M finitely generated, there exists an exact sequence

. . . // Rb // Ra // Rm // Rn // M // 0 .

Therefore

Rm // Rn // M // 0

is exact and M is finitely presented. Part (d) then follows from part (c). �

U
−

1
H

om
R

(M
⊕
M
′ ,
N

)
Θ
U
,M
⊕
M
′ ,
N

//

∼ =
U
−

1
ω

��

H
o
m
U
−

1
R

( U−
1
(M
⊕
M
′ )
,U
−

1
N
)

(γ
−

1
)∗

��
U
−

1
(H

om
R

(M
,N

)
⊕

H
om

R
(M
′ ,
N

))

∼ =
Γ

��

H
o
m
U
−

1
R

( (U
−

1
M

)
⊕

(U
−

1
M
′ )
,U
−

1
N
)

Ω
∼ =
��

U
−

1
H

om
R

(M
,N

)
⊕
U
−

1
H

om
R

(M
′ ,
N

)
Θ
U
,M
,N
⊕

Θ
U
,M
′ ,
N
// H

o
m
U
−

1
R

( U−
1
M
,U
−

1
N
) ⊕H

o
m
U
−

1
R

( U−
1
M
′ ,
U
−

1
N
)

(II.C.1.8.3) eqn070118b



II.C.2. MODULES AND PRIME SPECTRA 36

II.C.2. Modules and Prime Spectra
section062921l

The prime spectrum of a ring and related constructs are used heavily throughout the remainder of the
chapter and we introduce them here. Remark II.C.2.11 in particular will get a lot of use and will be used
directly in the proof of Theorem II.C.5.16, the ultimate goal of the chapter.

notn012018h Notation II.C.2.1. For any natural number n ∈ N, let [n] denote the set {1, 2, . . . , n}.

def092217a Definition II.C.2.2. Let I be an ideal of the ring R. The prime spectrum of R is

Spec(R) = {p ≤ R | p prime} .

The variety of I is

V (I) = {p ∈ Spec(R) | I ⊆ p} .
The radical of I is

rad(I) = {x ∈ R | ∃n ∈ N s.t. xn ∈ I } ,

also denoted r(I) or
√
I.

rmk092217e Remark II.C.2.3. We have the following properties of the radical ideal and the variety of an ideal.

rmk092217e.a (a) rad(I) ≤ R
rmk092217e.b (b) I ⊆ rad(I)
rmk092217e.c (c) I ⊇ J ≤ R =⇒ rad(J) ⊆ rad(I)

rmk092217e.d (d) rad(rad(I)) = rad(I)
rmk092217e.e (e) I ⊆ J =⇒ V (I) ⊇ V (J)
rmk092217e.f (f) I = R ⇐⇒ rad(I) = R

ex092217b Example II.C.2.4. Let R be a principal ideal domain. For any x ∈ R \ {0} there exists a unit u ∈ R×,
prime elements p1, . . . , pn ∈ R, and positive e1, . . . , en ∈ N such that

x = upe11 · · · penn
and piR 6= pjR whenever i 6= j. If we define I = xR, then V (I) = {p1R, . . . , pnR}. This is because
qR ∈ Spec(R) is such that qR contains xR if and only if q|x = upe11 · · · penn . That is, qR ∈ V (I) if and only
if q ∼ pi for some i.

We can also show rad(I) = p1 · · · pnR. Note by Remark II.C.2.3(f) above, we may assume without loss
of generality that n ≥ 1 (i.e., x is not a unit). Define e = maxi(ei) and we have

(p1 · · · pn)e = pe1 · · · pen ∈ p
e1
1 · · · penn R = xR.

So the product p1 · · · pn ∈ rad(I) and hence p1 · · · pnR ⊆ rad(I), because rad(I) is an ideal. For the reverse
containment let y ∈ rad(I) and let m ∈ N such that ym ∈ I. This implies upe11 · · · penn |ym. For each i ∈ [n],
ei ≥ 1 so pi|ym and pi|y. Moreover pi 6∼ pj whenever i 6= j implies p1 · · · pn|y and therefore y ∈ p1 · · · pnR.
Hence rad(I) ⊆ p1 · · · pnR, concluding the proof.

To give a more explicit example, consider x = 2531719 ∈ Z. By what we have shown above V (xZ) =
{2Z, 13Z, 19Z} and rad(xZ) = 2 · 13 · 19Z.

fact092217d Fact II.C.2.5. If I ≤ R, then V (rad(I)) = V (I).

Proof. The forward containment follows from parts (b) and (e) in Remark II.C.2.3 above. For the
reverse containment, let p ∈ V (I). For any x ∈ rad(I) with xn ∈ I ⊆ p, we know x ∈ p, implying
rad(I) ⊆ p. Having shown an arbitrary prime ideal containing I must also contain rad(I), we conclude
V (rad(I)) ⊇ V (I). �

prop092217c Proposition II.C.2.6. If I ≤ R, then

rad(I) =
⋂

p∈V (I)

p.

Proof. First we deal with a special case. If V (I) = ∅, then we have the empty intersection on the right,
which is defined to be all of R. Moreover in this case I must actually be the entire ring, since if I � R, then
I must be contained in some maximal (and therefore prime) ideal, violating the emptiness of V (I). This
gives rad(I) = rad(R) = R, so the proposition holds in this case.
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Now assume without loss of generality that V (I) is nonempty and therefore I 6= R. For any x ∈ rad(I)
with xn ∈ I for some n ∈ N, if I lies in some prime ideal p, then xn ∈ I ⊆ p and therefore x ∈ p. Having
shown that rad(I) is contained in an arbitrary element of V (I), we conclude

rad(I) ⊆
⋂

p∈V (I)

p.

For the other containment, we use a clever application of localization. Let x ∈ R \ rad(I) and define the
multiplicatively closed subset S = {1, x, x2, x3, . . . } ⊆ R. Since rad(I) ∩ S = ∅, it follows that S−1 rad(I)
contains no units of S−1R and therefore is a proper ideal of S−1R (see Fact II.C.2.10). Then we may let
S−1q � S−1R be a maximal ideal containing S−1 rad(I). By this we know q ∈ Spec(R) satisfies q ∩ S = ∅
and rad(I) ⊆ q, so q ∈ V (rad(I)) = V (I) by Fact II.C.2.5. Since q ∩ S = ∅, we know xn /∈ q for any integer
n ≥ 0 and in particular

x /∈ q ⊇
⋂

p∈V (I)

p.

Hence we have proven the reverse containment by contraposition. �

lem092217f Lemma II.C.2.7. If I, J ≤ R and V (J) ⊆ V (I), then I ⊆ rad(J). If I is also finitely generated over R,
then In ⊆ J , for all sufficiently large n > 0.

Proof. The first implication is a corollary of Remark II.C.2.3 and Proposition II.C.2.6:

I ⊆ rad(I) =
⋂

p∈V (I)

p ⊆
⋂

p∈V (J)

p = rad(J).

For the second part, let x1, . . . , xn ∈ R be such that (x1, . . . , xn)R = I ⊆ rad(J). By definition of the radical
there exist e1, . . . , en ∈ N such that xe11 , . . . , x

en
n ∈ J and we define e =

∑n
i=1 ei. We then have

Ie =

〈
xf1

1 · · ·xfnn
∣∣∣ n∑
i=1

fi = e

〉
.

Since for any generator of Ie above, the fi’s and ei’s both sum to e, we know fi ≥ ei for some i and therefore

xf1

1 · · ·x
fi
i · · ·x

fn
n ∈ (xfii )R ⊆ (xei)R ⊆ J.

Hence Ie ⊆ J and therefore It ⊆ Ie ⊆ J for all t ≥ e. �

def092217g Definition II.C.2.8. For all m ∈M , the annihilator of m is

AnnR(m) = {r ∈ R | rm = 0} .

Similarly we may define the annihilator of M as

AnnR(M) = {r ∈ R | rM = 0} = {r ∈ R | rm = 0, ∀m ∈M } =
⋂
m∈M

AnnR(m).

The support of M is the set of all prime ideals for which M “survives the localization process”; formally we
write

supp(M) = {p ∈ Spec(R) |Mp 6= 0} .

ex092217h Example II.C.2.9. Let U ⊆ R be multiplicatively closed.

ex092217h.a (a) For any m ∈M the following are equivalent.
ex092217h.a.i (i) m/1 = 0 ∈ U−1M .
ex092217h.a.ii (ii) There exists some u ∈ U such that um = 0.

ex092217h.a.iii (iii) U ∩AnnR(m) 6= ∅.
ex092217h.b (b) If M is finitely generated, then the following are equivalent.

ex092217h.b.i (i) U−1M = 0.
ex092217h.b.ii (ii) There exists some u ∈ U such that uM = 0.

ex092217h.b.iii (iii) U ∩AnnR(M) 6= ∅.
The majority of the above implications are simply restatements of definitions, so we will only prove (bi)
implies (bii) in part (b).
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Proof. If there exists u ∈ U such that uM = 0, then for any m/v ∈ U−1M we have

m

v
=
um

uv
=

0

uv
= 0.

Therefore U−1M = 0. This proves one direction and we point out here that we did not need the finitely
generated assumption. If M = (m1, . . . ,mn)R and U−1M = 0, then notice mi/1 = 0 for each i = 1, . . . , n.
By part (a) this means there exist u1, . . . , un ∈ U such that uimi = 0 for i = 1, . . . , n. Define u =

∏n
i=1 ui

and let m =
∑n
i=1 rimi be given. It follows that

um = u

(
n∑
i=1

rimi

)
=

n∑
i=1

ri∏
j 6=i

uj

 (uimi) = 0

implying uM = 0. �

In order to be explicit in our reasoning in Remark II.C.2.11, we prove a fact about ideals under local-
ization.

fact092817a Fact II.C.2.10. Let I ≤ R be an ideal and let U ⊆ R be a multiplicatively closed subset. Then U−1I =
U−1R if and only if I ∩ U 6= ∅.

Proof. If we first assume there exists an element u ∈ I ∩ U , then we write

1U−1R =
u

u
∈ U−1I

and therefore U−1I = U−1R. On the other hand if we assume U−1I = U−1R, then 1U−1R ∈ U−1I and we
have

1U−1R =
1

1
=
a

u

for some a ∈ I and some u ∈ U . By the definition of equality in U−1R, there exists an element v ∈ U such
that

va︸︷︷︸
∈I

= vu︸︷︷︸
∈U

and we conclude I ∩ U 6= ∅. �

rmk092217i Remark II.C.2.11. We have the following relationships between annihilators, supports, and prime spec-
tra.

rmk092217i.a (a) AnnR(m),AnnR(M) ≤ R
rmk092217i.b (b) supp(R) = Spec(R)
rmk092217i.c (c) supp(0) = ∅
rmk092217i.d (d) supp(R/I) = V (I)
rmk092217i.e (e) M finitely generated =⇒ supp(M) = V (AnnR(M))

Proof. (a) The annihilators are non-empty since they each contain 0. They are closed under addition
and subtraction as a result of the distributive property. They contain additive inverses, because

rm = 0 =⇒ (−r)m = (−1)rm = 0.

Finally, they absorb multiplication from R as a result of the associative property.

(b) Supports are special sets of prime ideals and spectra contain all prime ideals of the particular ring, so
supp(R) ⊆ Spec(R) from the definitions. On the other hand, for any p ∈ Spec(R), 1 /∈ p so 1 is an allowable
denominator and we write

0 6= 1

1
∈ Rp

implying Rp 6= 0. Thus p ∈ supp(R).

(c) This holds simply because there is no localization under which zero is ‘resurrected’ to something non-zero.
That is, 0p = 0 for any p ∈ Spec(R).
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(d) For any p ∈ Spec(R), by Fact II.C.2.10 above we have Ip = Rp if and only if I ∩ (R \ p) 6= ∅. This is
equivalent to I 6⊆ p which is equivalent to p /∈ V (I). Therefore

Ip ( Rp ⇐⇒ p ∈ V (I). (II.C.2.11.1) eqn082318b

Consider the short exact sequence

0 // I
⊆ // R

π // R/I // 0

where π is the canonical surjection. Since localization is exact by Theorem II.C.1.4, the sequence

0 // Ip
i // Rp

πp // (R/I)p // 0

is also exact. The First Isomorphism Theorem for modules applied to πp yields

(R/I)p = Imπp ∼=
Rp

ker(πp)
=

Rp

Im i
= Rp/Ip. (II.C.2.11.2) eqn082318c

Our application of short exact sequences shortens the proof immensely. By the definition of a support,
p ∈ supp(R/I) if and only if (R/I)p 6= 0. Then by Equation (II.C.2.11.2), this is if and only if Rp/Ip or
Ip ( Rp. Then by Equation (II.C.2.11.1), we get that p ∈ supp(R/I) if and only if p ∈ V (I).

(e) This requires only definitions and Example II.C.2.9. First, we use the definition of a support to see that
p ∈ supp(M) if and only if Mp 6= 0. Then by Example II.C.2.9 and the definition of a variety, it follows that
Mp 6= 0 if and only if (R\p)∩AnnR(M) = ∅ if and only if AnnR(M) ⊆ p if and only if p ∈ V (AnnR(M)). �

ex092217j Example II.C.2.12. Let K be a field and define the ring R = K[x, y].

ex092217j.a (a) For every polynomial f ∈ R

supp(R/fR) = V (fR) = {p ∈ Spec(R) | f ∈ p} .

ex092217j.b (b) For every m,n ∈ N we have

supp

(
R

(xm, yn)R

)
= {(x, y)R} = supp

(
R

((x, y)R)m

)
.

ex092217j.c (c) For the ideal L = (x2, xy)R ≤ R we have

supp (R/L) = V (xR) = supp(R/xR)

and

rad(L) = xR.

Proof. Here we will only justify part (b) of the example, as the other parts follow more or less similarly.
By Remark II.C.2.11(d), to prove (b) it suffices to show

V ((xm, yn)R)
(1)
= {(x, y)R} (2)

= V (((x, y)R)m).

If p ∈ Spec(R) and (xm, yn)R ⊆ p ( R, then xm, yn ∈ p and thus x, y ∈ p since p prime. It follows that
(x, y)R ⊆ p and the strictness of p implies (x, y)R = p, because (x, y)R is maximal. Therefore

V ((xm, yn)R) ⊆ {(x, y)R}.

On the other hand, (x, y)R ∈ Spec(R) and xm, yn ∈ (x, y)R, so (xm, yn)R ⊆ (x, y)R. Hence equality (1)
holds by mutual containment.

Now for equality (2). Since (x, y)R ∈ Spec(R) and xayb ∈ (x, y)R for any a, b ≥ 0, we know

((x, y)R)m =
{
xayb | a, b ≥ 0, a+ b = m

}
⊆ (x, y)R

implying (x, y)R ∈ V (((x, y)R)m), so we have containment in one direction. For the reverse, let p ∈ Spec(R)
such that ((x, y)R)m ⊆ p. Then xm, ym ∈ p a prime ideal, so x, y ∈ p and therefore (x, y)R ⊆ p. It follows
that

V (((x, y)R)m) ⊆ {(x, y)R}
so equality (2) holds by mutual containment. �
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def092217l Definition II.C.2.13. A prime ideal p ∈ Spec(R) is associated to M if there exists m ∈ M such that
p = AnnR(m). The set of all such ideals is the set of associated primes, denoted as follows.

Ass(M) = {p ∈ Spec(R) | p is associated to M }
= {AnnR(m) ≤ R |m ∈M } ∩ Spec(R)

= {AnnR(m) ≤ R |m ∈M, AnnR(m) is a prime ideal}

In other words, Ass(M) is the set of prime ideals of R that are also the annihilator of some element of M .

ex092217m Example II.C.2.14. Let p ∈ Spec(R), r ∈ R, and r + p ∈ R/p.

AnnR(r + p) =

{
R r ∈ p

p r /∈ p

The first case follows because r + p = 0R/p and the second case follows because r + p 6= 0R/p and R/p is a
domain. In general, determining the set of associated primes of R/I is difficult, but in this case we have just
shown that

Ass(R/p) = {p}.

ex092217n Example II.C.2.15. Assume R is a principal ideal domain and let I = xR. If x ∈ R×, then xR = R
and R/xR = 0, implying

Ass(R/xR) = Ass(0) = {AnnR(0)} ∩ Spec(R) = {R} ∩ Spec(R) = ∅.

If x = 0, then xR is the (prime) zero ideal and therefore by Example II.C.2.14 we have

Ass(R/xR) = {xR} = {0}.

So let x ∈ R \ (R× ∪ {0}) and p1, . . . , pn ∈ R primes (not necessarily distinct) such that x = p1 · · · pn. We
claim

Ass(R/xR) = {p1R, . . . , pnR}.

Proof. For the reverse containment, first define x′ = p2 · · · pn. Since prime factorizations are unique
in R, this implies {r ∈ R | rx′ ∈ xR} = p1R. We can also write

{r ∈ R | rx′ ∈ xR} = {r ∈ R | r(x′ + xR) = 0 in R/xR} = AnnR(x′ + xR).

We have therefore shown

p1R ∈ Spec(R/xR) ∩ {AnnR(y + xR) ≤ R | y + xR ∈ R/xR} = Ass(R/xR).

Since multiplication in R is commutative, we conclude piR ∈ Ass(R/xR) for all i = 1, . . . , n, proving the
reverse containment.

Let y ∈ R such that AnnR(y+xR) ∈ Spec(R) and set AnnR(y+xR) = pR for some prime p ∈ R. Then
p(y + xR) = 0 or in other words py = xr = p1 · · · pnr for some r ∈ R. This implies xr ∈ pR a prime ideal,
so either r ∈ pR or pi ∈ pR for some i ∈ [n]. Suppose r ∈ pR, so r = pz for some z ∈ R. Therefore

py = p1 · · · pnr = p1 · · · pnpz

and since R is commutative y = p1 · · · pnz by cancellation. However, this implies y ∈ xR and thus pR =
AnnR(0) = R, a contradiction. Therefore pi ∈ pR for some i ∈ [n] and it follows that pR = piR for some
i ∈ [n]. �

note092217k Note II.C.2.16. Given the polynomial ring R = K[x, y] as in Example II.C.2.12, we can plot graphic
representations of ideals generated by monomials in the ring.

(xm, yn)R ((x, y)R)3 (x2, xy)R
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y
...

...
...

... . .
.

• • • • • . . .

• • • • • . . .

yn • • • • • . . .

• • . . .
oo //• • x
��

OO

xm

y
...

...
...

... . .
.

• • • • • . . .

y3 • • • • • . . .

− • • • • . . .

− • • • . . .

oo //| | • • x

��

OO

x3

y
...

...
...

... . .
.

− • • • • . . .

− • • • • . . .

− • • • • . . .

y − • • • • . . .

oo //| • • • x

��

OO

x2

ex092217o Example II.C.2.17. Here we make use of lattice diagrams representing monomial ideals in the polyno-
mial ring R = K[x, y], where K is a field. Given the lattice representation of an ideal from Note II.C.2.16,
certain corners in the lattice give us information about the associated primes of the residual ring. Specifically,
first consider I = (xm, yn)R with lattice representation

y
...

...
...

... . .
.

• • • • • . . .

• • • • • . . .

yn • • • • • . . .

◦ • • . . .
oo //• • x
��

OO

xm

where we have denoted the element (xm−1yn−1) ∈ R with ‘◦’. For the element xm−1yn−1 ∈ R/I, since

x, y ∈ AnnR

(
xm−1yn−1

)
and 1 /∈ AnnR

(
xm−1yn−1

)
, we have

AnnR

(
xm−1yn−1

)
= (x, y)R.

This implies

(x, y)R ∈ Ass(R/I)

and in fact we will later show Ass(R/I) = {(x, y)R}.
Next consider the ideal J = ((x, y)R)3 = (x3, x2y, xy2, y3)R with lattice representation

y
...

...
...

... . .
.

• • • • • . . .

y3 • • • • • . . .

◦ • • • • . . .

◦ • • • . . .
oo //◦ • • x
��

OO

x3

where y2, xy, x2 ∈ R have been marked. Since (x, y)R ⊆ AnnR(xy) ( R for xy ∈ R/J and (x, y)R is

maximal, we have (x, y)R = AnnR(xy) and an identical argument shows AnnR(y2) = (x, y)R = AnnR(x2).
Hence

(x, y)R ∈ Ass(R/J).

Lastly let L = (x2, xy)R and consider the elements y3, x ∈ R/L for which we have

(x)R = AnnR

(
y3
)

(x, y)R = AnnR(x)
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and therefore

{(x)R, (x, y)R} ⊆ Ass(R/L).

As with the previous two ideals, the element x that get annihilated resides near the corner in our lattice
diagram below.

y
...

...
...

... . .
.

− • • • • . . .

y3 ◦ • • • • . . .

− • • • • . . .

y − • • • • . . .

oo //◦ • • • x
��

OO

x x2

Contrary to our first two examples however, notice y3 instead lies in the ‘corridor’ along the vertical axis
and in fact could have been yt for any t ≥ 1. So when looking for associated primes, we look near corners
and in the corridors of the corresponding lattice diagram.

rmk092217p Remark II.C.2.18. For any m ∈M there exists a well-defined R-module homomorphism

λm : R // M

r � // rm.

If we let I = AnnR(m), then ker(λm) = I, Imλm = Rm, and the First Isomorphism Theorem gives
R/I ∼= Rm ⊆M . Moreover there exists an injective R-module homomorphism

λm : R/I
� � // M

r + I
� // rm.

In particular, if p ∈ Ass(M), then there exists an injective R-module homomorphism from R/p into M .

Conversely, if ϕ : R/p �
� // M is an injective R-module homomorphism, then for the element m = ϕ

(
1
)
,

we have AnnR(m) = p and so p ∈ Ass(M). Hence p ∈ Ass(M) if and only if there exists an injection

ϕ : R/p �
� // M.

prop092217q Proposition II.C.2.19. Assume R is noetherian and let M be a non-zero R-module.

prop092217q.a (a) The set

AR(M) = {AnnR(m) |m ∈M \ {0}}
has maximal elements, and every maximal element is prime. Therefore Ass(M) 6= ∅.

prop092217q.b (b) If we define the set

ZDR(M) = {zero divisors on M in R},
then we have

{0} ∪ ZDR(M) =
⋃

p∈Ass(M)

p.

prop092217q.c (c) Independent of the noetherian assumption we have Ass(M) ⊆ supp(M).

Proof. (a) Since AR(M) is a nonempty set of ideals of R, the maximum condition for noetherian rings
guarantees AR(M) has a maximal element I = AnnR(m) for some m ∈M \ {0}. Note m 6= 0 implies I 6= R.
To show I is prime, let a, b ∈ R such that ab ∈ I and a /∈ I. Since a /∈ I, it follows that am 6= 0 and we have

I = AnnR(m) ⊆ AnnR(am) ∈ AR(M)

where the set containment holds by the commutivity of R. Moreover, since AnnR(am) 6= R, the maximality
of I implies

I = AnnR(m) = AnnR(am).

In particular, b ∈ AnnR(am) = I.
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(b) By part (a) every element of AR(M) is contained in an associated prime of M . That is, for every
m ∈M \ {0} there exists p ∈ Ass(M) such that AnnR(m) ⊆ p. Hence

{0} ∪ ZDR(M) ⊆
⋃

p∈Ass(M)

p.

On the other hand, p ∈ Ass(M) means precisely that p = AnnR(m) for some m ∈M , so (p\{0}) ⊆ ZDR(M).

(c) Let p = AnnR(m̂) ∈ Ass(M), for some m̂ ∈ M . Then we can define the following injective R-module
homomorphism.

πm̂ : R/p �
� // M

r + p
� // rm̂

Localizing at p (which preserves injectivity) we have

0 6= Q(R/p) = (R/p)p
� � (πm̂)p // Mp

where Q(R/p) denotes the field of fractions (recall Example II.A.2.7). So Mp contains a non-zero submodule
and therefore Mp 6= 0. Hence p ∈ supp(M). �

rmk101117a Remark II.C.2.20. Recall Examples II.C.2.12 and II.C.2.17. Applying Proposition II.C.2.19(c), we can
justify the equalities in the next display.

{(x, y)R} = Ass(R/I)

{(x, y)R} = Ass(R/J)

{(x)R, (x, y)R} ⊆ Ass(R/L)

Proof. Since rad(I) = (x, y)R, justifying the first equality is done as follows and the second is proven
almost identically.

{(x, y)R}
II.C.2.17
⊆ Ass(R/I)

II.C.2.19(c)

⊆ supp(R/I)
II.C.2.11.4

= V (I)
II.C.2.5

= V ((x, y)R) = {(x, y)R}

Later in Example II.C.3.10 we will see we have equality in the third case as well. Right now we have

{(x)R, (x, y)R} ⊆ Ass(R/L) ⊆ supp(R/L) = V (xR)

but this does not give the desired equality. What we will later see is that we can greatly refine the list of
primes to consider on the far right-hand side of this containment. �

Since M = {0} implies Ass(M) = ∅, we may strengthen the conclusion of Proposition II.C.2.19(a).

cor092817b Corollary II.C.2.21. If R is noetherian, then an R-module M is non-zero if and only if Ass(M) 6= ∅.

ex092817c Example II.C.2.22. Let K be a field. The ring defined as

R =

∞∏
i=1

K = {(a1, a2, . . . ) | ai ∈ K, ∀i ∈ N}

is a commutative ring with identity under component-wise operations, but it is not noetherian. Indeed,
consider the proper ideal

I =

∞⊕
i=1

K = {(a1, a2, . . . ) ∈ R | ai = 0, ∀i� 0} 63 (1, 1, . . . ).

Some examples of maximal ideals of R include those of the form

mi = {(a1, a2, . . . ) ∈ R | ai = 0} = Ker τi

where τi : R� K maps sequences from R to their ith entry and the maximality of m follows from the First
Isomorphism Theorem for rings (i.e., R/m ∼= field implies m maximal). Since no mi contains I, there must
be some other maximal ideal m � R such that I ⊆ m. It is actually quite difficult to write down m explicitly.
In addition, it can be shown that Ass(R/I) = ∅, even though R/I 6= 0, thereby demonstrating the necessity
of the noetherian assumption in Corollary II.C.2.21.
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fact092817d Fact II.C.2.23. If R is not noetherian, but M is a noetherian module over R, then the conclusion of
Corollary II.C.2.21 still holds.

Proof. The details are omitted here, but the crux of the proof is M noetherian lets us conclude after
some work that R/AnnR(M) is noetherian. �

We give a fact that will be used to prove the proposition that follows.

fact011218a Fact II.C.2.24. Given a short exact sequence 0 // A′
f // A

g // A′′ // 0 of R-module ho-
momorphisms, A = 0 if and only if A′ = 0 = A′′.

Proof. Assume A = 0. Since f is injective, A′ must be zero and since g is surjective, A′′ must be zero as
well. Conversely if we assume A′ = 0 = A′′, by the exactness of the sequence we have 0 = Im f = ker(g) = A
as desired. �

prop092817e Proposition II.C.2.25. Consider a short exact sequence of R-module homomorphisms.

0 // M ′
f // M

g // M ′′ // 0

(a) supp(M) = supp(M ′) ∪ supp(M ′′)
(b) Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′)

Proof. (a) First note by Fact II.C.2.24 that A 6= 0 if and only if either A′ 6= 0 or A′′ 6= 0. Let
p ∈ Spec(R) and since localization is exact we have the short exact sequence

0 // M ′p // Mp
// M ′′p // 0

implying the following string of equivalent conditions.

p ∈ supp(M) ⇐⇒ Mp 6= 0

⇐⇒ M ′p 6= 0 or M ′′p 6= 0

⇐⇒ p ∈ supp(M ′) or p ∈ supp(M ′′)

⇐⇒ p ∈ supp(M ′) ∪ supp(M ′′)

This completes the proof of this part.

(b) For the first containment let p ∈ Ass(M ′). By Remark II.C.2.18 there exists an injective R-module
homomorphism π : R/p ↪→ M ′. Composing with f we conclude there exists another injective R-module
homomorphism f ◦ π : R/p ↪→M and by the same remark p ∈ Ass(M).

For the second containment let q ∈ Ass(M). Then there exists a submodule N ⊆M such that N ∼= R/q
by Remark II.C.2.18. For any r ∈ R/q ∼= N such that r 6= 0 (i.e., r /∈ q), notice

AnnR(r) = {s ∈ R | sr = 0 ∈ R/q} = q.

We now consider two possibilities regarding the intersection of the image of f and the submodule N .
In the first case when N ∩ Im f 6= {0}, there is a non-zero element α ∈ N ∩ Im f with α = f(β) for some

β ∈M ′. Since f is injective, AnnR(β) = AnnR(α) = q and hence q ∈ Ass(M ′).
In the second case we have

{0} = N ∩ Im f = N ∩Ker g = Ker g|N : N −→M ′′

so the restriction g|N is injective. This yields

R/q ∼= N ∼= g(N) ⊆M ′′

implying q ∈ Ass(M ′′). �

rmk083018a Remark II.C.2.26. For any R-modules A and B, if there exists an injective R-module homomorphism
φ : A ↪→ B, then by Proposition II.C.2.25 we have Ass(A) ⊆ Ass(B).

lem100217a Lemma II.C.2.27. Let M be an R-module and assume there exists a finite filtration

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn = M.

(a) supp(M) =

n⋃
i=1

supp

(
Mi

Mi−1

)
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(b) Ass(Mi) ⊆ Ass(M) ⊆
n⋃
i=1

Ass

(
Mi

Mi−1

)
Proof. (a) We will induct on n. The base case n = 0 holds trivially. So we assume n ≥ 1 and the

result holds for all modules with filtrations of length n − 1. Given a filtration of length n above, we know
Mn−1 has a filtration of length n− 1. Therefore under our induction hypothesis

supp(Mn−1) =

n−1⋃
i=1

(
Mi

Mi−1

)
.

To the short exact sequence

0 // Mn−1
⊆ // Mn

π // Mn/Mn−1
// 0

with canonical epimorphism π, we apply Proposition II.C.2.25 to get

supp(M) = supp(Mn) = supp(Mn−1) ∪ supp(Mn/Mn−1)

=

(
n−1⋃
i=1

supp

(
Mi

Mi−1

))
∪ supp(Mn/Mn−1)

=

n⋃
i=1

supp

(
Mi

Mi−1

)
.

(b) The first containment follows from Remark II.C.2.26 and the inclusion maps Mi
εi // M . For the

second containment we will again induct on n, skipping the trivial base cases when n = 0 or 1. Assume
n ≥ 2 and the result holds for modules with filtrations of length n−1. We again use the short exact sequence

0 // Mn−1
⊆ // Mn

// Mn/Mn−1
// 0

which yields

Ass(Mn) ⊆ Ass(Mn−1) ∪Ass(Mn/Mn−1) II.C.2.25

⊆
n−1⋃
i=1

Ass(Mi/Mi−1) ∪Ass(Mn/Mn−1) induction hypothesis

=

n⋃
i=1

Ass(Mi/Mi−1).

�

lem100217b Lemma II.C.2.28. Let M1, . . . ,Mn be R-modules and set M =

n⊕
i=1

Mi.

lem100217b.a (a) supp(M) =

n⋃
i=1

supp(Mi)

lem100217b.b (b) Ass(M) =

n⋃
i=1

Ass(Mi)

Proof. (a) We can explicitly build the following finite filtration of M .

0 = M0 ⊆M1 ⊆ · · · ⊆
n−2⊕
i=1

Mi ⊆
n−1⊕
i=1

Mi ⊆
n⊕
i=1

Mi = M

For any j ∈ [n], applying the First Isomorphism Theorem for modules to the canonical projection πj :
j⊕
i=1

Mi →Mj gives the following isomorphism.

⊕j
i=1Mi⊕j−1
i=1 Mi

∼= Mj
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This, along with Lemma II.C.2.27, allows us to write

supp(M) =

n⋃
j=1

supp

(⊕j
i=1Mi⊕j−1
i=1 Mi

)
=

n⋃
j=1

supp(Mj)

so part (a) holds.

(b) By Lemma II.C.2.27 we have

Ass(M) ⊆
n⋃
j=1

Ass

(⊕j
i=1Mi⊕j−1
i=1 Mi

)
=

n⋃
j=1

Ass(Mj).

For the reverse containment, notice for any j ∈ [n] we have canonical injection and surjection εj and πj ,
respectively, by which we construct the exact sequence

0 // Mj

εj // M
πj // M/Mj

// 0

Applying II.C.2.25, we conclude Ass(Mj) ⊆ Ass(M) for every j ∈ [n] and hence so is the union of all such
Ass(Mj). �

II.C.3. Prime Filtrations
section062921m

We will see in Theorem II.C.3.3 (and Corollary II.C.3.4) that in the noetherian setting, finite prime filtra-
tions of modules guarantee the sets of associated primes are finite as well. Moreover, Theorem II.C.3.3 will be
used either directly or indirectly in a number of future results (e.g., Corollary II.C.4.2 and Lemma II.C.4.19).
Proposition II.C.3.13 is another significant result. Part (a) in particular leverages prime filtrations to give
equality between three noteworthy sets of primes.

thm100217c Theorem II.C.3.1. Assume R is noetherian and let M be a finitely generated R-module. There exists
a finite filtration

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn = M

such that for all i ∈ [n], there exists an ideal pi ∈ Spec(R) for which Mi/Mi−1
∼= R/pi.

Proof. If M = 0, then the empty filtration will suffice with n = 0, so assume M 6= 0. Set M0 = 0 and
since R is noetherian, there exists an ideal p ∈ Ass(M) by Proposition II.C.2.19. By the First Isomorphism
Theorem there exists a submodule M1 ⊆ M such that M1/0 ∼= M1

∼= R/p. If M1 = M , then stop here
with a finite filtration of length one. Otherwise M/M1 6= 0 and there exists p2 ∈ Ass(M/M1) by the same
proposition. Hence by the Fourth Isomorphism Theorem there exists a submodule M2 ⊆M with M1 ⊆M2

and M2/M1
∼= R/p2. If M2 = M , then stop here with a finite filtration of length two. Otherwise continue the

process, which must terminate after finitely many steps since M is noetherian (finitely generated modules
over a noetherian ring are themselves noetherian). �

fact082418a Fact II.C.3.2. The conclusion of Theorem II.C.3.1 holds if we replace the noetherian assumption on the
ring R with a noetherian assumption on the module M .

thm100217d Theorem II.C.3.3. Assume M has a filtration as in Theorem II.C.3.1.

(a) Ass(M) ⊆ {p1, . . . , pn} ⊆ supp(M) and therefore |Ass(M)| <∞.
(b) For any ideal p ∈ Spec(R), p ∈ supp(M) if and only if pi ⊆ p for some i ∈ [n]. In other words

supp(M) =

n⋃
i=1

V (pi).

Proof. (a) From Lemma II.C.2.27 and Example II.C.2.14 we have

Ass(M) ⊆
n⋃
i=1

Ass(Mi/Mi−1) =

n⋃
i=1

Ass(R/pi) = {p1, . . . , pn}

thereby proving the first containment. For any i ∈ [n] we have

0 6= Q(R/pi) ∼=
(
R

pi

)
pi

∼=
(

Mi

Mi−1

)
pi

∼=
(Mi)pi

(Mi−1)pi
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where the second isomorphism is a consequence of Theorem II.C.1.4. Therefore (Mi)pi is a non-zero sub-
module of Mpi . Hence Mpi is non-zero, i.e., pi ∈ supp(M).

(b) This part is a corollary of previous results.

supp(M) =

n⋃
i=1

supp

(
Mi

Mi−1

)
II.C.2.27

=

n⋃
i=1

supp

(
R

pi

)
Mi

Mi−1

∼=
R

pi

=

n⋃
i=1

V (pi) II.C.2.11

�

cor100217e Corollary II.C.3.4. If R is noetherian and M is a finitely generated R-module, then |Ass(M)| <∞.

rmk100217f Remark II.C.3.5. The finitely generated assumption for M in the above corollary is indeed necessary.
There exist noetherian rings such as R = K[x] or R = Z for which |Spec(R)| = ∞. In such cases we can
define a module

M =

∞⊕
i=1

R

pi

such that p1, p2, · · · ∈ Spec(R) are all distinct. Since {p1, p2, . . . } ⊆ Ass(M) by Proposition II.C.2.25, we
know |Ass(M)| =∞.

We next use prime filtrations to give another verification of Example II.C.2.15.

ex100217g Example II.C.3.6. Assume R is a unique factorization domain and let x ∈ R \ R× be non-zero. Then
x = p1 · · · pn for some primes p1, . . . , pn ∈ R. Defining the module M = R/xR we have the filtration

0 �
� // R

p1R
� � // · · · �

� // R

p1 · · · pn−2R
� � φ2 // R

p1 · · · pn−1R
� � φ1 // R

p1 · · · pnR
=

R

xR
= M

where φ1(r) := pnr and hence Imφ1 ≤ R/xR is the ideal generated over R by pn. The maps φi for i ≥ 2
are defined similarly. Using a clever re-write of the submodule Imφ1 (cf. Note II.C.3.7), we apply the Third
Isomorphism Theorem to write

R/xR

Imφ1
=

R/p1 · · · pnR
pn ·R/(p1 · · · pnR)

=
R/p1 · · · pnR
pnR/p1 · · · pnR

∼=
R

pnR

and similarly

R/p1 · · · piR
Imφn−i+1

∼=
R

piR

for any i ∈ [n − 1]. Therefore R/xR has a prime filtration with pi = piR and from Theorem II.C.3.3 we
know

Ass(R/xR) ⊆ {p1R, . . . , pnR}. (II.C.3.6.1) eqn012018a

Moreover for any i ∈ [n] we can define the injection

R/piR
� � // R/xR

r
� // rp1 · · · pi−1pi+1 · · · pn

implying by Remark II.C.2.18 that piR ∈ Ass(R/xR). Hence we have equality in (II.C.3.6.1).
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note100417a Note II.C.3.7. In the previous example we rely on the following general fact. Let J ≤ R, M an
R-module, and N ⊆M a submodule. Then we have

J · M
N

= 〈j · (m+N) | j ∈ J, m ∈M〉

= 〈jm+N | j ∈ J, m ∈M〉
= 〈 (jm+ n) +N | j ∈ J, m ∈M, n ∈ N〉

=
JM +N

N
(II.C.3.7.1) eqn012018b

In the special case when N ⊆ JM we have

JM +N = 〈jm+ n | j ∈ J, m ∈M, n ∈ N〉 = 〈jm | j ∈ J, m ∈M〉 = JM

so Equation (II.C.3.7.1) above simplifies to give the equality

J · M
N

=
JM

N
.

We now introduce some notation and a lemma in order to simplify the proof of Example II.C.3.10.

def082618a Definition II.C.3.8. Let A be a commutative ring with identity and define the polynomial ring R =
A[X1, . . . , Xd]. A monomial in R is an element of the form Xn1

1 · · ·X
nd
d where n1, . . . , nd ∈ N0. The

collection of all monomials in a subset S ⊆ R is denoted JSK and an ideal I ≤ R is a monomial ideal if it
there exists a set T ⊆ JRK such that I = 〈T 〉. Let X ≤ R denote the ideal generated by the variables, i.e.,
X = 〈X1, . . . , Xd〉.

lem060318a Lemma II.C.3.9. Let k be a field, let R = k[X1, . . . , Xd] be a polynomial ring, and let I be a monomial
ideal of R such that Xmi

i ∈ I for all i ∈ [d]. Then there exists a chain of ideals

I = I0 ⊂ I1 ⊂ · · · ⊂ IA = R

where A is the dimension of R/I as a k-vector space, such that Ij/Ij−1
∼= R/X for all j ∈ [A].

Proof. We induct on A. If A = 1, then noting that A = |JRK \ JIK|, this implies JRK \ JIK = {1}, so
I = X and the chain I ⊂ R satisfies the claim.

Assume A > 1 and the claim holds for any monomial ideal J ⊃ {Xn1
1 , . . . , Xnd

d } for some non-zero
n1, . . . , nd ∈ N for which dimk(R/J) = A − 1. Let f ∈ JRK such that f /∈ I, but Xif ∈ I for every i ∈ [d].
(These are called the corner elements of I.) We have an R-module homomorphism

τ : R // I + fR

I

r � // 0 + rf

which is non-zero and surjective since τ(1) = f , f /∈ I, and f generates the codomain. However, Xi ∈ ker(τ)
for every i ∈ [d] by definition of a corner element, so X1, . . . , Xd ∈ ker(τ). Hence X ⊂ ker(τ) ( R so
ker(τ) = X by the maximality of X and therefore R/X ∼= (I + fR)/I. We write I ( I + fR to get the
beginning of our chain.

Now we claim dimk(R/(I + fR)) = A− 1. We have a short exact sequence

0 // I + fR

I
// R

I
// R

I + fR
// 0

with the natural injection and surjection. This is exact as a sequence of k-modules (i.e., vector spaces), so
it splits to yield

R

I
∼=
I + fR

I
⊕ R

I + fR
and therefore to justify our claim we need only point out that

I + fR

I
∼=
R

X
∼= k.

Therefore by our induction hypothesis we have a sequence

I + fR = I1 ⊂ I2 ⊂ · · · ⊂ IA = R

such that Ij/Ij−1
∼= R/X for j = 2, . . . , A. Splicing on I ⊂ I1 we have the desired chain. �
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ex100217h Example II.C.3.10. Let k be a field and consider the unique factorization domain R = k[x, y].

ex100217h.a (a) Define I = (xm, yn)R where m,n ∈ N and consider R/I as a finitely generated R-module. From
Example II.C.2.17 we already know

Ass

(
R

(xm, yn)R

)
= {(x, y)R}

so we want to build a prime filtration such that each subquotient is isomorphic to R/(x, y)R. By
Lemma II.C.3.9 we know there exists a chain of ideals

I = I0 ⊂ I1 ⊂ · · · ⊂ IA = R

such that Ij/Ij−1
∼= R/(x, y)R for all j ∈ [A] where A = dimk(R/I). Considering that I ⊂ Ij for all j

we also have the chain

0 ⊂ I1/I ⊂ I2/I ⊂ · · · ⊂ IA/I = R/I

and by the Third Isomorphism Theorem

Ij/I

Ij−1/I
∼=

R

(x, y)R
.

Since (x, y)R ∈ Spec(R), this chain is a prime filtration for R/I. In the proof of the lemma, we saw that
the original chain from I to R is built by “throwing in” successive corner elements of I. In practice we
can proceed in a methodical fashion as depicted in the lattice diagram below

...
...

...
...

yn • • •
| n+1

•
1|
•
|

· · ·

− −
...

◦
2

−
|

•
|

· · ·

−
3
−

|
•
|

· · ·

− −
...|
•
|

· · ·

−
|
−
n
• · · ·

oo //| | | •
��

OO

xm

where the element xm−1yn−1, marked with ‘◦’, represents a generator of I1/I. We have thus demon-
strated the existence of the prime filtration of R/I guaranteed by Theorem II.C.3.1.

ex100217h.b (b) Next consider the ideal L = (x2, xy)R with the following lattice diagram.

...
...

... . .
.

− • • • · · ·
− • • • · · ·

y − • • • · · ·
//| • • · · ·

OO

x2

For elements x+L, y+L ∈ R/L, we already know (x, y)R = AnnR(x+L) and (x)R = AnnR(y+L), so

(x, y)R, (y)R ∈ Ass(R/L) (II.C.3.10.1) eqn012018f

So we want to show R/L has a prime filtration

0 ⊆ 〈x+ L〉 ⊆ R/L
To check the subsequent quotients, we first point out that by the argument in part (a) of this example

〈x+ L〉
0

∼= 〈x+ L〉 ∼=
R

(x, y)R
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so the condition for a prime filtration is satisfied for the first containment. To check the condition on
the second containment we define the surjection

R/L // R/(x)R

r + L � // r

with kernel 〈x+ L〉, so the condition is verified by the First Isomorphism Theorem and because (x)R ∈
Spec(R). (Well-definedness of the above map holds since L ⊆ (x)R.) Thus we have a prime filtration
with p1 = (x, y)R and p2 = (x)R, so Ass(R/L) ⊆ {(x, y)R, (x)R} by Theorem II.C.3.3 and in fact
Ass(R/L) = {(x, y)R, (x)R} by (II.C.3.10.1).

prop100217i Proposition II.C.3.11. Let R be a non-zero commutative ring with identity, let M be an R-module,
and let U ⊆ R be a multiplicatively closed subset.

prop100217i.a (a) suppU−1R(U−1M) =
{
U−1p | p ∈ supp(M) and p ∩ U = ∅

}
prop100217i.b (b) AssU−1R(U−1M) ⊇

{
U−1p | p ∈ Ass(M) and p ∩ U = ∅

}
prop100217i.c (c) If R is also noetherian, then we have equality in (b).

Proof. (a) The prime ideals of U−1R are described as follows.

Spec(U−1R) =
{
U−1p | p ∈ Spec(R) and p ∩ U = ∅

}
For any ideal U−1p, we know Mp

∼= (U−1M)U−1p by the map

Φ: Mp
// (U−1M)U−1p

m

v
� // m/1

v/1

and thus
(U−1M)U−1p 6= 0 ⇐⇒ Mp 6= 0

completing the proof of (a).

(b) Let p ∈ Ass(M) such that U ∩ p = ∅. By Remark II.C.2.18 there exists a monomorphism

R/p �
� ϕ // M

and therefore we also have the following monomorphism.

U−1(R/p)
� � U−1ϕ // U−1M

Hence U−1p ∈ AssU−1R(U−1M) by the isomorphism

U−1R

U−1p
∼= U−1(R/p).

(c) Assume R is noetherian and let U−1p ∈ AssU−1R(U−1M), where we know the form of such elements by
the first line of the proof of part (a). We need to show p ∈ Ass(M). Since R is noetherian let x1, . . . , xn ∈ R
such that p = (x1, . . . , xn)R and by virtue of being an associated prime we also know U−1p = AnnU−1R(m/u)
for some m/u ∈ U−1M . For any i ∈ [n], xi/1 ∈ U−1p so

xi
1
· m
v

= 0

and thus there exist u1, . . . , un ∈ U such that uixim = 0 for each i ∈ [n]. We define u′ = u1 · · ·un ∈ U for
which we have

xiu
′m = xiu1 · · ·ui · · ·unm = 0

for every i ∈ [n], implying
p = (x1, . . . , xn)R ⊆ AnnR(u′m).

Now recall to prove p ∈ Ass(M) it suffices to find a monomorphism mapping from R/p to M . Define the
R-module homomorphism

φ : R // M

r � // ru′m
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and notice that p ⊆ ker(φ). Then by the Universal Mapping Property for quotients, the map

α : R/p // M

r � // ru′m

is a well-defined R-module homomorphism as well. To show α is one-to-one, we consider a commutative
diagram

R/p
α //

β

��

M

γ

��
U−1(R/p)

U−1α // U−1(M)

and we will show both β and U−1α are injective. First we verify the commutivity of the diagram. Indeed
for any r + p ∈ R/p we have

(U−1α ◦ β)(r + p) = U−1α

(
r + p

1

)
=
α(r + p)

1

(γ ◦ α)(r + p) = γ(α(r + p)) =
α(r + p)

1
.

To show β is one-to-one, let r + p ∈ R/p such that β(r + p) = 0. This implies

r + p

1
=

0 + p

v

for any v ∈ U . By our definition of equality in the ring of fractions, there is some w ∈ U such that

0 + p = (w · 1 · 0) + p = (wrv) + p

so wrv ∈ p. Since p is a prime ideal, from the conditions w, v ∈ U and U ∩ p = ∅, we conclude r ∈ p and
r + p = 0 + p. Hence β is one-to-one.

Turning our attention to U−1α, we first note that since u/m and u′m/1 differ only by the unit u′/u we
have

U−1p = AnnU−1R

(
u′m

1

)
.

Next consider an element in the kernel of U−1α:

(U−1α)

(
r + p

v

)
= 0 ⇐⇒ ru′m

v
=

0

v

⇐⇒ r

v
∈ U−1p

⇐⇒ r ∈ p

⇐⇒ r + p

v
= 0 ∈ U−1(R/p).

Hence U−1α is one-to-one and therefore so is the composition (U−1α)◦β. By the commutivity of the diagram
the composition γ ◦ α must also be one-to-one, so we conclude α is injective. �

cor100717a Corollary II.C.3.12. Let Q ∈ Spec(R).

(a) supp(MQ) = {pQ | p ∈ supp(M), p ⊆ Q}
(b) Ass(MQ) ⊇ {pQ | p ∈ Ass(M), p ⊆ Q}
(c) If R is noetherian, then we have equality in (b).

Proof. Set U = R \Q in the context of Proposition II.C.3.11. Then p∩U = ∅ if and only if p ⊆ Q. �

prop100717b Proposition II.C.3.13. Assume R is noetherian and M 6= 0 is a finitely generated R-module with prime
filtration 0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M such that Mi/Mi−1

∼= R/pi for every i ∈ [n].

prop100717b.a (a) Min(Ass(M)) = Min{p1, . . . , pn} = Min(supp(M))
prop100717b.b (b) |Min(supp(M))| <∞ and for all p ∈ supp(M), there exists some p′ ∈ Min(supp(M)) such that p′ ⊆ p.
prop100717b.c (c) |Min(Spec(R))| <∞ and for all p ∈ Spec(R), there exists some p′ ∈ Min(Spec(R)) such that p′ ⊆ p.
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Proof. (a) Hypothetically, let p ∈ Min(supp(M)) and thus Mp 6= 0. Since R is noetherian we know
Rp is noetherian as well, so AssRp

(Mp) 6= ∅ by Corollary II.C.2.21. Therefore by Corollary II.C.3.12 we
let q ∈ Ass(M) such that q ⊆ p and qp ∈ AssRp

(Mp). Since Ass(M) ⊆ supp(M) by Theorem II.C.3.3,
the minimality of p in supp(M) combined with the fact that q ⊆ p implies p = q ∈ Ass(M). We claim
p ∈ Min(Ass(M)). Since Ass(M) is finite also by Theorem II.C.3.3, there exists an ideal p′ ∈ Min(Ass(M))
such that p′ ⊆ p. Again using the minimality of p ∈ supp(M) we conclude p = p′ ∈ Min(Ass(M)) and we
have thus shown

Min(supp(M)) ⊆ Min(Ass(M)). (II.C.3.13.1) eqn012018d

Next let

pi ∈ Min{p1, . . . , pn} ⊆ {p1, . . . , pn}
(1)

⊆ supp(M)

the existence of which is guaranteed, because we are taking a minimal element of a finite set, and (1) is
given by Theorem II.C.3.3. We want to show pi is a minimal element of supp(M). Suppose there is an ideal
p′ ∈ supp(M) such that p′ ⊆ pi. By Theorem II.C.3.3 there exists an ideal pj ∈ {p1, . . . , pn} such that

pj ⊆ p′ ⊆ pi

and the minimality of pi yields

pi ⊆ pj ⊆ p′ ⊆ pi.

Hence p′ = pi, so pi is minimal and we have shown

Min{p1, . . . , pn} ⊆ Min(supp(M)). (II.C.3.13.2) eqn012018e

Note this containment verifies the legitimacy of the hypothetical element we took from
Min(supp(M)) in the beginning of the proof. Finally let

p ∈ Min(Ass(M)) ⊆ Ass(M)
II.C.3.3
⊆ {p1, . . . , pn}.

This implies p = pi for some i ∈ [n] and since {p1, . . . , pn} is finite, there exists some pj ∈ Min{p1, . . . , pn}
such that

pj ⊆ pi = p.

Using the results from Equations (II.C.3.13.1) and (II.C.3.13.2) we have shown

pj ∈ Min{p1, . . . , pn} ⊆ Min(supp(M)) ⊆ Min(Ass(M))

whereby we conclude p = pj by the minimality of p. This shows

Min(Ass(M)) ⊆ Min{p1, . . . , pn}.

(b) Let p ∈ supp(M) and we have p ⊇ pi for some i ∈ [n] by Theorem II.C.3.3. Therefore there exists some

pj ∈ Min{p1, . . . , pn} = Min(supp(M))

such that

p ⊇ pi ⊇ pj

so taking pj as our p′ this proves the second part. The first part is verified simply as follows.

|Min(supp(M))| = |Min{p1, . . . , pn}| ≤ n <∞

(c) This is more or less a corollary. Set M = R, note supp(R) = Spec(R), and apply (b). �

We provide here two examples demonstrating that minimal associated primes may or may not be unique.

ex100717c Example II.C.3.14. Consider the ring of polynomials with complex coefficients R = C[x] and define the
R-module

M =
C[x]

x(x− 1) · · · (x− 9)
.

From our work in Example II.C.3.6 we know

Ass(M) = {xR, (x− 1)R, . . . , (x− 9)R}.

Since (x− i)R 6⊆ (x− j)R for any i 6= j, we conclude

Min(Ass(M)) = Ass(M).



II.C.4. PRIME AVOIDANCE AND NAKAYAMA’S LEMMA 53

ex100717d Example II.C.3.15. Consider the ring of polynomials in two variables with coefficients in an arbitrary
field, R = K[x, y], and define the R-module

M =
K[x, y]

(x2, xy)R
.

We already know from Example II.C.3.10 that

Ass(M) = {(x)R, (x, y)R}
and since (x)R ⊂ (x, y)R we have

Min(Ass(M)) = {(x)R}.

def100717e Definition II.C.3.16. With R and M as in Proposition II.C.3.13, define

MinR(M) = Min(Ass(M)).

Any ideal p ∈ MinR(M) is a minimal prime of M or a minimal associated prime of M . If
q ∈ Ass(M) \MinR(M), then q is an embedded prime of M .

note100717f Note II.C.3.17. Let R be a noetherian ring. For any ideals p, q ∈ Spec(R) such that q ⊆ p, we have
V (p) ⊆ V (q). Applying Theorem II.C.3.3 and Proposition II.C.3.13, it follows that

supp(M) =

n⋃
i=1

V (pi) =
⋃

pi∈Min(supp(M))

V (pi)

where p1, . . . , pn are the prime ideals from some prime filtration of M .

II.C.4. Prime Avoidance and Nakayama’s Lemma
section062921n

In this section we prove two major results from abstract algebra. Prime Avoidance gives us more insight
into the associated primes of finitely generated R-modules, especially when R is noetherian, as we will see
in Corollaries II.C.4.2 and II.C.4.3. Nakayama’s Lemma has a number of corollaries, some of which we will
produce here. Perhaps most importantly, Nakayama’s Lemma gives us Lemma II.C.4.19 which we will use
directly in the proof of Theorem II.C.5.16.

lem100717g Lemma II.C.4.1 (Prime Avoidance). Let R be a non-zero commutative ring with identity and let I1, . . . , In, J ≤
R be ideals. Assume one of the following:

(a) R contains an infinite field as a subring, or
(b) the ideals I1, . . . , In−2 are prime.

Then whenever J ⊆
⋃n
i=1 Ii, we have J ⊆ Ii for some i ∈ [n]. Equivalently, if J 6⊆ Ii for all i ∈ [n], then

J 6⊆
⋃n
i=1 Ii.

Proof. Assume K ⊆ R as a subring with K an infinite field. For an arbitrary vector space V over K,
we have this fact:

V1, . . . , Vn ( V proper subspaces =⇒
n⋃
i=1

Vi ( V. (II.C.4.1.1) eqn012018g

Assume J 6⊆ Ij for any j ∈ [n], which implies J ∩ Ij ( J . Since ideals of R are K-vector spaces, (II.C.4.1.1)
gives

J ∩

 n⋃
j=1

Ij

 =

n⋃
j=1

(J ∩ Ij) ( J

and hence

J 6⊆
n⋃
j=1

Ij .

Now assume I1, . . . , In−2 are prime and we will argue by induction on n. For the base case n = 1, the
hypothesis is vacuous and the conclusion holds trivially. For the base case n = 2, suppose J 6⊆ I1, I2 and
suppose for the sake of contradiction that J ⊆ (I1 ∪ I2). Then there exist elements x1, x2 ∈ J such that
x1 /∈ I1 and x2 /∈ I2. We observe

x1 ∈ J ⊆ (I1 ∪ I2) =⇒ x1 ∈ I2
x2 ∈ J ⊆ (I1 ∪ I2) =⇒ x2 ∈ I1.
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We know also that x1 + x2 ∈ J . If x1 + x2 ∈ I1, then x1 = (x1 + x2)− x2 ∈ I1, a contradiction. An identical
contradiction lets us conclude x1 + x2 /∈ I2, giving us

x1 + x2 ∈ J \ (I1 ∪ I2)

which is a contradiction, proving the second base case.
For the induction step, assume n ≥ 3 and assume the result holds for lists of length n− 1. If J ⊆

⋃
i6=l Ii

for some l ∈ [n], then by the induction hypothesis J ⊆ Ii for some i 6= l and we are done. Therefore assume
without loss of generality

J 6⊆
⋃
i 6=l

Ii

for all l ∈ [n]. For each l ∈ [n], fix an element

xl ∈ J \
⋃
i 6=l

Ii (II.C.4.1.2) eqn032518a

and consider the element x′ = x1 + (x2 · · ·xn) ∈ J . Suppose J ⊆
⋃n
i=1 Ii, implying x′ ∈ Ii for some i. If we

first suppose x′ ∈ I1, it follows that x2 · · ·xn = x′ − x1 ∈ I1. Since I1 is a prime ideal, this implies xj ∈ I1
for some j ≥ 2, contradicting our choices in (II.C.4.1.2). Second, if we suppose x′ ∈ Ii for some i ≥ 2, then
we have x2 · · ·xn ∈ Ii and therefore x1 = x′ − x2 · · ·xn ∈ Ii, again contradicting (II.C.4.1.2). �

cor100717h Corollary II.C.4.2. Let R be a noetherian ring and let M be a non-zero, finitely generated R-module.
If J ≤ R consists entirely of zero-divisors on M , then there exists some ideal p ∈ Ass(M) such that J ⊆ p.

Proof. SinceR is noetherian andM is finitely generated, Theorem II.C.3.3 implies Ass(M) = {p1, . . . , pn}
for some n ≥ 1. By Proposition II.C.2.19 we have

J ⊆ {zero-divisors on M} =
⋃

p∈Ass(M)

p.

Therefore J ⊆ pi for some i ∈ [n] by Lemma II.C.4.1. �

cor100717i Corollary II.C.4.3. Assume R is noetherian, let M be a non-zero finitely generated R-module, and
let m � R be a maximal ideal. Then

m contains a non-zero-divisor on M ⇐⇒ m /∈ Ass(M)

or equivalently
m consists entirely of zero-divisors on M ⇐⇒ m ∈ Ass(M).

Proof. If m consists entirely of zero-divisors on M , then m ⊆ p for some p ∈ Ass(M) by Corol-
lary II.C.4.2. Since we have a maximal ideal inside a proper ideal, m = p ∈ Ass(M), proving one direction.
On the other hand, if we suppose m = AnnR(m) for some 0 6= m ∈M , then m consists entirely of zero-divisors
on M . �

def100717j Definition II.C.4.4. Let I ≤ R and M an R-module. IM is the submodule of M defined

IM = 〈 im ∈M | i ∈ I, m ∈M〉 =


n∑
j=1

ijmj | ij ∈ I, mj ∈M, ∀j ∈ [n]; n ∈ N

 .

fact100717k Fact II.C.4.5. We can make M/IM into an R/I-module by the operation

(r + I)(m+ IM) = (rm) + IM.

Proof. Checking the module axioms is straight-forward. For instance, we verify two questions of well-
definedness here. Let r1, r2 ∈ R such that r1 + I = r2 + I and let m ∈ M . Therefore r1 − r2 ∈ I and it
follows that (r1m)− (r2m) = (r1 − r2)m ∈ IM . Thus

(r1 + I)(m+ IM) = (r1m) + IM = (r2m) + IM = (r2 + I)(m+ IM)

verifying one question. Now let r ∈ R and let m1,m2 ∈M such that m1 +IM = m2 +IM . Then there exist
i ∈ I and n ∈ M such that m1 −m2 = in. Therefore (rm1) − (rm2) = r(m1 −m2) = r(in) = (ri)n ∈ IM
and it follows that

(r + I)(m1 + IM) = (rm1) + IM = (rm2) + IM = (r + I)(m2 + IM)

verifying the second question, so the operation is well-defined. �



II.C.4. PRIME AVOIDANCE AND NAKAYAMA’S LEMMA 55

def100717l Definition II.C.4.6. R is a local ring if it has a unique maximal ideal. If the unique maximal ideal is
m � R, then we say (R,m) is a local ring. Some texts would say this is a quasi-local ring, because we are
not assuming R is noetherian.

fact100717m Fact II.C.4.7. Let R be a commutative ring with identity.

fact100717m.a (a) If m � R is maximal such that 1 + m ⊆ R×, then (R,m) is local.
fact100717m.b (b) The following are equivalent.

fact100717m.b.i (i) (R,m) is local.
fact100717m.b.ii (ii) R \R× is a proper ideal of R.
fact100717m.b.iii (iii) There exists a proper ideal a � R such that R \ a ⊆ R×.

fact100717m.c (c) When the conditions of (b) are satisfied, we have m = a = R \R×.

Proof. (b) Part (c) will follow from this argument as well. First assume (R,m) is local and we claim
m = R \ R×, for which it suffices to show that R \ m = R×. For any u ∈ R×, R = 〈u〉, so u /∈ m since m
is a proper ideal. Thus R× ⊆ R \ m. For any x ∈ R \ R×, we have 〈x〉 � R. Since every proper ideal is
contained in a maximal ideal, 〈x〉 ⊆ m and therefore x ∈ m. Having shown the contrapositive, we conclude
R× ⊇ R \m. Therefore (bi) implies (bii).

If we assume R \R× � R and set a = R \R×, then it is immediate that R \ a = R×. Hence (bii) implies
(biii).

Finally, assume a � R is such that R \ a ⊆ R×. Taking the complement we have a ⊇ R \ R×. On
the other hand, if we let a ∈ a, then a /∈ R×, because a is a proper ideal. Therefore a ∈ R \ R× and thus
a ⊆ R \ R×. Hence a = R \ R×. We claim for every maximal ideal η � R we have η = a. For any y ∈ η,
since y does not generate the entire ring, y /∈ R×. Therefore y ∈ Ia and thus η ⊆ a ( R. Since η is maximal,
η = a, completing the proof of (b) and (c).

(a) By part (b) it suffices to show R\m ⊆ R×. Let x ∈ R\m and set 〈x,m〉 = 〈{x} ∪m〉. It is straightforward
to show

〈x,m〉 = 〈ax+m | a ∈ R, m ∈ m〉 .

Then m ⊆ 〈x,m〉. Since x ∈ 〈x,m〉 and x /∈ m we have m ( 〈x,m〉 ⊆ R. Therefore 〈x,m〉 = R by the
maximality of m and it follows that 1 ∈ 〈x,m〉. Then we let a ∈ R and m ∈ m such that 1 = ax + m.
Therefore

ax = 1−m ∈ 1 + m ⊆ R×

and we conclude a, x ∈ R×. �

NakLem Lemma II.C.4.8 (Nakayama’s Lemma). Assume (R,m) is a local ring and M is a finitely generated
R-module. The following conditions are equivalent.

NakLem.i (i) M = 0
NakLem.ii (ii) M = mM
NakLem.iii (iii) M/mM = 0

Proof. It is clear that (i) implies (iii) and it is also clear that conditions (ii) and (iii) are equivalent, so
we need only show that (ii) implies (i). Assume M = mM , let m1, . . . ,mn ∈M be a generating sequence for
M , and assume no proper subsequence of m1, . . . ,mn generates M . Suppose for the sake of contradiction

that n ≥ 1. Then m1 ∈M = mM can be written m1 =

n∑
i=1

rimi for some r1, . . . , rn ∈ m. Therefore

(1− r1)m1 = m1 − r1m1 =

n∑
i=2

rimi.

Since r1 ∈ m, Fact II.C.4.7 above implies 1− r1 ∈ R× so m1 ∈ 〈m2, . . . ,mn〉. In other words

M = 〈m1, . . . ,mn〉 ⊆ 〈m2, . . . ,mn〉 ⊆M

giving equality at every step, which contradicts the minimality of our generating sequence. Therefore n = 0
and M = 〈∅〉 = 0. �



II.C.4. PRIME AVOIDANCE AND NAKAYAMA’S LEMMA 56

ex100817b Example II.C.4.9. Let k be a field and consider the ring R = k × k. We can define the projection

P1 : R // // k

(a, b)
� // a

for which the kernel KerP1 = 0 × k is a maximal ideal and we denote it m = KerP1. Notice this maximal
ideal is not unique. Consider the cyclic R-module M = 0× k = 〈(0, 1)〉. In this case we have

mM = (0× k)(0× k) = (0× k) = M

but M 6= 0. The point here is that in order to use a maximal ideal in Nakayama’s Lemma, we really do need
that ideal to be unique.

ex100817c Example II.C.4.10. Let (R,m) be a local integral domain, but not a field. Such rings could be

Z〈p〉 or K[X]〈X〉

where p ∈ N a prime. Let M = Q(R) 6= 0 be the field of fractions of R. Since R is not a field, m 6= 0 and
one can check that m ·Q(R) = Q(R). So M must be finitely generated in Nakayama’s Lemma.

cor100817d Corollary II.C.4.11. If (R,m) is local, noetherian, and not a field, then m2 ( m.

Proof. Since R is noetherian, we know m is finitely generated, so by Nakayama’s Lemma, if m · m =
m2 = m, then m = 0, which is a contradiction, since R is not a field. �

cor100817e Corollary II.C.4.12. Assume R is noetherian and M is a non-zero, finitely generated R-module.

cor100817e.a (a) If (R,m) is local and not a field with m /∈ Ass(M), then m \m2 contains a non-zero-divisor on M .
cor100817e.b (b) If m � R a maximal ideal such that m2 6= m and m /∈ Ass(M), then m \m2 contains a non-zero-divisor

on M .

Proof. We will prove part (b), then part (a) will follow by Corollary II.C.4.11. By Proposition II.C.2.19,
the set of associated primes is nonempty and by Theorem II.C.3.3 we write Ass(M) = {p1, . . . , pn} for some
n ≥ 1. We will apply Prime Avoidance (Lemma II.C.4.1) to the list p1, . . . , pn,m

2,m where p1, . . . , pn are
all prime. Since we are assuming m 6= m2, it follows that m 6⊆ m2 (maximality of m would force equality in
this case). We are also assuming m /∈ Ass(M), so by prime avoidance

m 6⊆ p1 ∪ · · · ∪ pn ∪m2.

Therefore there exists an element x ∈ m such that x /∈ p1 ∪ · · · ∪ pn = ZDR(M) and x /∈ m2 (cf. Proposi-
tion II.C.2.19). Hence we have found an element x ∈ m \m2 that is a non-zero-divisor on M . �

cor101117b Corollary II.C.4.13. Let (R,m) be local, M an R-module, and N ⊆M a submodule such that M/N is
finitely generated over R. If M = N + mM , then M = N . (Note the stronger assumption that M is finitely
generated would be sufficient to conclude M/N finitely generated.)

Proof. If M = N + mM , then we have

m

(
M

N

)
=

mM +N

N
=
M

N
.

Since M/N is finitely generated, we may apply Nakayama’s Lemma to conclude M = N . �

def100917b Definition II.C.4.14. Let M be a finitely generated R-module. A minimal generating sequence for M
is a generating sequence m1, . . . ,mn ∈M such that no proper subsequence generates M .

ex100917c Example II.C.4.15. For the ring R = K[x, y], the elements x, y ∈ R form a minimal generating sequence
for 〈x, y〉.

rmk101117d Remark II.C.4.16. Note in our definition above, we make no claim on our ability to find a shorter
generating sequence, but rather we cannot shorten this particular sequence without disrupting its generating
property for M .

cor101117e Corollary II.C.4.17. Let (R,m,K) be local and M a finitely generated R-module. Let m1, . . . ,mn ∈M .

cor101117e.a (a) M/mM is a finite-dimensional vector space over K via the scalar multiplication

r ·m = rm.
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cor101117e.b (b) The sequence m1, . . . ,mn generates M as an R-module if and only if m1, . . . ,mn ∈ M/mM spans
M/mM as a K-vector space.

cor101117e.c (c) m1, . . . ,mn ∈M is a minimal generating sequence for M if and only if m1, . . . ,mn ∈M/mM is a basis
for M/mM over K. In particular, every minimal generating sequence for M has the same number of
elements, namely

dimK(M/mM).

Proof. M/mM is a K-module by Fact II.C.4.5. The K-vector space axioms follow directly from the
R-module axioms. For example we have

r(s ·m) = r · (sm) = r(sm) = (rs)m = rs ·m = (r s) ·m.
Since M is finitely generated we let m1, . . . ,mn generate M over R. For any m ∈ M , there exist

r1, . . . , rn ∈ R such that m =
∑n
i=1 rimi. Therefore for any m ∈M/mM there exist r1, . . . , rn ∈ K such that

m =

n∑
i=1

rimi =

n∑
i=1

rimi

so m1, . . . ,mn spans M/mM over K, completing the proof of part (a) as well as the forward implication of
part (b).

Now assume m1, . . . ,mn spans M/mM over K. We claim M = 〈m1, . . . ,mn〉 + mM . Certainly the
reverse containment holds, because 〈m1, . . . ,mn〉 ,mM ⊆ M as submodules. On the other hand, if we let
m ∈M be arbitrary, then our spanning assumption implies there exist r1, . . . , rn ∈ K such that

m =

n∑
i=1

rimi =

n∑
i=1

rimi.

This yields

m−
n∑
i=1

rimi ∈ mM

=⇒ m =

n∑
i=1

rimi + y for some y ∈ mM

=⇒ m ∈ 〈m1, . . . ,mn〉+ mM

proving the claim. Therefore we apply Corollary II.C.4.13 to conclude M = 〈m1, . . . ,mn〉, so M is finitely
generated, proving part (b).

For the forward direction of part (c), assume m1, . . . ,mn is a minimal generating sequence for M . Part
(b) then implies m1, . . . ,mn spans M/mM . If we suppose for the sake of contradiction that m1, . . . ,mn is not
a basis, then we can rearrange them if necessary to assume m2, . . . ,mn spans M/mM . Another application of
part (b) implies m2, . . . ,mn is a generating sequence for M over R, contradicting our minimality assumption.
Therefore m1, . . . ,mn is a basis for M/mM as a K-vector space.

On the other hand, let us assume that m1, . . . ,mn is a basis for M/mM over K. Equivalently, we have
m1, . . . ,mn is a minimally spanning set for M/mM over K. Then part (b) implies m1, . . . ,mn is a generating
sequence for M as an R-module. Suppose m1, . . . ,mn is not minimal. That is, assume m2, . . . ,mn is a
generating sequence for M , after some rearrangement of the mi’s if necessary. Again applying part (b) we
know m2, . . . ,mn spans M/mM as a K-vector space, contradicting the fact that m1, . . . ,mn is a minimal
spanning set. �

cor101217a Corollary II.C.4.18. Assume (R,m,K) is local and P is a finitely generated projective R-module. Then
P is free with P ∼= Rn where n = dimK(P/mP ).

Proof. By Corollary II.C.4.13 there exist p1, . . . , pn ∈ P such that they form a minimal generating
sequence for P , where n = dimK(P/mP ). Note this implies P/mP is an n-dimensional K-vector space and
therefore P/mP ∼= Kn. We therefore have the following well-defined, surjective R-module homomorphism.

τ : Rn // // P

ei
� // pi∑n

i=1 riei
� //∑n

i=1 ripi
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We may therefore define a short exact sequence 0 // ker(τ)
⊆ // Rn

τ // P // 0 and from here it

suffices to show that ker(τ) = {0}, thereby proving P is isomorphic to a free module. Let K = ker(τ). Since
P is projective, the short exact sequence splits and we write

Rn ∼= K ⊕ P π // K

(x, p)
� // x

where π is a well-defined, surjective R-module homomorphism, so K is also finitely generated. We will use
this to apply Nakayama’s Lemma. We have a string of isomorphisms.

Kn ∼=
(
R

mR

)n
∼=

Rn

mRn
∼=

K ⊕ P
m(K ⊕ P )

∼=
K

mK
⊕ P

mP
∼=

K

mK
⊕ Kn

Since isomorphic vector spaces have the same dimension we have n = dimK(K/mK)+n, implying dimK(K/mK) =
0 and therefore K/mK = 0. It follow from Nakayama’s Lemma that ker(τ) = K = 0. �

lem101217b Lemma II.C.4.19. Assume R is noetherian, let Γ and ∆ be non-zero, finitely generated R-modules, and
let I ≤ R such that supp(∆) = V (I). If I ⊆ ZDR(Γ), then HomR(∆,Γ) 6= 0.

Proof. By Corollary II.C.4.2 there exists a prime ideal p ∈ Ass(Γ) such that I ⊆ p. Since p is an
associated prime, by Remark II.C.2.18 there exists an injective R-module homomorphism R/p ↪→ Γ and the
exactness of localization gives the existence of an injection (R/p)p ↪→ Γp. Moreover, by Theorem II.C.1.4
we have Rp/pp ∼= (R/p)p and therefore we have an injection Rp/pp ↪→ Γp.

Since I ⊆ p, we know p is an element of the variety V (I) = supp(∆). Therefore ∆p 6= 0. This is finitely
generated over Rp (since ∆ finitely generated over R), so by Nakayama’s Lemma we have

∆p

pp∆p
6= 0 (II.C.4.19.1) eqn112218a

Similar to the context of Corollary II.C.4.17, the module in Equation (II.C.4.19.1) gives a vector space over
Rp/pp. Since one can always surject from a non-zero vector space onto the underlying field, we have the
following commutative diagram.

∆p
// //

∴∃
((

∆p

pp∆p

// //

�

Rp

pp� _

��
Γp

Since Rp/pp is non-zero, we have exhibited a non-zero R-module homomorphism in HomRp
(∆p,Γp) which

is therefore non-zero. Therefore HomR(∆,Γ) 6= 0 since HomRp
(∆p,Γp) ∼= HomR(∆,Γ). �

cor101217c Corollary II.C.4.20. Let R be noetherian, let M be a non-zero, finitely generated R-module, and let
I � R be a proper ideal. If depth(I,M) = 0, then HomR(R/I,M) 6= 0.

Proof. Since depth(I,M) = 0, it follows that I is composed entirely of zero-divisors on M . Since
I 6= R, the module R/I is non-zero and is also finitely generated over R. Therefore by Remark II.C.2.11 we
have supp(R/I) = V (I) and hence HomR(R/I,M) is non-zero by Lemma II.C.4.19. �

lem101217d Lemma II.C.4.21. Let R be noetherian and let M and N be R-modules such that M is finitely generated.
Then

Ass(HomR(M,N)) = supp(M) ∩Ass(N).

Proof. If M = 0, then HomR(M,N) = 0, so Ass(HomR(M,N)) = Ass(0) = ∅, supp(M) = ∅, and
therefore supp(M)∩Ass(N) = ∅. Hence the conclusion holds in this case. The conclusion holds by the same
reasoning if N = 0, so assume without loss of generality that M,N 6= 0.

Let p ∈ Spec(R) such that p /∈ supp(M) and we will argue that p /∈ Ass(HomR(M,N)). Since Mp = 0
we have HomR(M,N)p ∼= HomRp

(Mp, Np) = 0 by Proposition II.C.1.8. Therefore

p /∈ supp(HomR(M,N)) ⊇ Ass(HomR(M,N)).

We’ve shown p not in the support of M implies p not in the associated primes of the homomorphism module.
This is the contrapositive of

p ∈ Ass(HomR(M,N)) =⇒ p ∈ supp(M)
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so Ass(HomR(M,N)) ⊆ supp(M).
Now notice M finitely generated implies there exists some t ≥ 1 such that we can map surjectively from

Rt onto M . The left-exactness of HomR(−, N) along with Hom-cancellation and Example II.C.1.2 gives

HomR(M,N) �
� // HomR(Rt, N) ∼= N t.

Therefore by Remark II.C.2.26 and Lemma II.C.2.28 we have

Ass(HomR(M,N)) ⊆ Ass(N t) = Ass(N)

which proves Ass(HomR(M,N)) ⊆ supp(M) ∩Ass(N).
For the reverse containment, first consider that in the degenerate case when supp(M)∩Ass(N) is empty,

we have nothing to show, since every set contains the empty set. Now assume without loss of generality that
p lies in the intersection. We claim

HomR(M,R/p) 6= 0. (II.C.4.21.1) eqn032818a

To put things in the notation of Lemma II.C.4.19, set I = AnnR(M), Γ = R/p, and ∆ = M . By Re-
mark II.C.2.11 we have

supp(∆) = V (AnnR(M)) = supp(M)

which implies I ⊆ p, since p ∈ supp(M). Therefore I · R/p = 0, so I ⊆ ZD(R/p), and thus Equation
(II.C.4.21.1) holds by Lemma II.C.4.19.

Next we claim if α ∈ HomR(M,R/p) is non-zero, then AnnR(α) = p. If x ∈ p, then x · R/p = 0 and in
particular x ·α(m) = 0 for all m ∈M . Equivalently, this means (xα)(m) = 0 for all m ∈M , so x ∈ AnnR(α)
and we have shown p ⊆ AnnR(α). On the other hand, since α 6= 0, let m ∈ M such that α(m) 6= 0. Notice
also that since p is prime and 0 6= α(m) ∈ R/p, then AnnR(α(m)) = p. Now for any y ∈ AnnR(α), we
have y · α(m) = (yα)(m) = 0, implying y ∈ AnnR(α(m)) = p and we conclude AnnR(α) = p by mutual
containment.

It now suffices to show p ∈ Ass(HomR(M,N)). By Equation II.C.4.21.1, there exists some element
α ∈ HomR(M,R/p) \ {0} and by our second claim AnnR(α) = p. Define the R-module homomorphism

φ : R // HomR(M,R/p)

r � // rα

and note ker(φ) = AnnR(α) = p. Therefore by the First Isomorphism Theorem we have the injective
R-module homomorphism

φ : R/p // HomR(M,R/p)

r � // rα.

Moreover since p ∈ Ass(N), there also exists an injective R-module homomorphism R/p ↪→ N by Remark
II.C.2.18. Since HomR(M,−) is right exact we have the horizontal injection in the following commutative
diagram

HomR(M,R/p)
� � //

�

HomR(M,N)

R/p
?�

OO

) 	
∴∃

66

and we conclude p ∈ Ass(HomR(M,N)) by Remark II.C.2.18. �

ex101317a Example II.C.4.22. Recall the running example we began in Note II.C.2.16. We can see our new lemma
in action.

supp Ass
R = K[x, y] Spec(R) {0}

A = R/((x, y)R)n {(x, y)R} {(x, y)R}
B = R/(xn, ym)R {(x, y)R} {(x, y)R}
C = R/(x2, xy)R V (xR) {xR, (x, y)R}

Notice that
Ass(HomR(A,R)) = supp(A) ∩Ass(R) = {(x, y)} ∩ {0} = ∅,

which implies that HomR(A,R) = 0 by Corollary II.C.2.21. Similarly,

Ass(HomR(B,C)) = supp(B) ∩Ass(C) = {(x, y)R} ∩ {xR, (x, y)R}={(x, y)R} 6= ∅,
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which also implies that HomR(B,C) 6= 0 by Corollary II.C.2.21.

II.C.5. Regular Sequences and Ext
section062921o

We begin the section with a re-characterization of regular sequences and a characterization of the radical
ideal in terms of the intersection of prime ideals (see Lemma II.C.5.7). After stating four facts, we use them
to prove Lemma II.C.5.13 before finally achieving our goal of the chapter by proving Theorem II.C.5.16.

disc101317b Discussion II.C.5.1. We have already defined M-regular elements and sequences (Definition II.B.2.1).
We can also give a different characterization of M -regular sequences.

Assume M 6= 0 is a finitely generated R-module. We claim a sequence a1, . . . , an ∈ R is M -regular if
and only if a1 /∈ ZDR(M), ai /∈ ZDR(M/(a1, . . . , ai−1)M) for all i = 2, . . . , n, and (a1, . . . , an)M 6= M .

Proof. One implication is trivial from Definition II.B.2.1, so assume a1 /∈ ZDR(M), furthermore that
ai /∈ ZDR(M/(a1, . . . , ai−1)M) for all i = 2, . . . , n, and (a1, . . . , an)M 6= M . Suppose for the sake of
contradiction that a1M = M . This implies

(a1, . . . , an)M ⊆M = a1M ⊆ (a1, . . . , an)M.

This contradicts the assumption that (a1, . . . , an)M 6= M . Thus a1M 6= M .
Now suppose ai(M/(a1, . . . , ai−1)M) = M/(a1, . . . , ai−1)M for some i ≥ 2. Then we have

M

(a1, . . . , ai−1)M
= ai ·

M

(a1, . . . , ai−1)M
=

(a1, . . . , ai)M

(a1, . . . , ai−1)M

which implies
(a1, . . . , an)M ⊆M = (a1, . . . , ai)M ⊆ (a1, . . . , an)M.

However, this again contradicts the assumption (a1, . . . , an)M 6= M and we conclude

ai(M/(a1, . . . , ai−1)M) 6= M/(a1, . . . , ai−1)M

for all i ∈ [n]. Hence, a1, . . . , an is M -regular. �

disc110218b Discussion II.C.5.2. If (R,m) is a local ring and M 6= 0 is a finitely generated R-module, then
Nakayama’s Lemma implies aM 6= M for all a � R. In particular, a sequence a1, . . . , an ∈ a � R is
M -regular if and only if a1 /∈ ZDR(M) and ai /∈ ZDR(M/(a1, . . . , an−1)M) for all i = 2, . . . , n, by Discus-
sion II.C.5.1.

ex101917a Example II.C.5.3. Let K be a field.

(a) Let R = K[X1, . . . , Xd] for some d ≥ 1. We claim for any n ≤ d, the sequence X1, . . . , Xn ∈ R is
R-regular. In the case when n = 1, note that X1 /∈ ZDR(R) and R/X1R ∼= K[X2, . . . , Xn] 6= 0, so
X1R 6= R and thus X1 is R-regular.

Now assume d ≥ n ≥ 2 and the sequence X1, . . . , Xn−1 is R-regular. To show X1, . . . , Xn to be
regular we need only point out that Xn /∈ ZDR(R/(X1, . . . , Xn−1)R) and that

R

(X1, . . . , Xn)R
∼= K[Xn+1, . . . , Xd] 6= 0

implying by Nakayama’s Lemma that

(X1, . . . , Xn)R 6= R.

Therefore X1, . . . , Xn is R-regular by Discussion II.C.5.1.
(b) Consider the ring Z. For any n ∈ Z with n ≥ 2, n is Z-regular, because n is a non-zero, non-unit element

of an integral domain. However, we can show that Z has no regular sequences of length two.
Suppose m,n ∈ Z is Z-regular. Then m 6= 0 is a non-unit and to build a regular sequence n must

be Z/mZ-regular. Two things can go wrong:
(1) If (m,n) = 1, then

n ·Z/mZ = (m,n)Z/mZ = Z/mZ

so n is not Z/mZ-regular.
(2) If (m,n) = d ≥ 2, then d|m, d|n, and we have cases to check. For instance if m|n, then n ·Z/mZ = 0

so m,n is not regular. If m -n, then d ∈ Z/mZ is non-zero and n · d = 0 ∈ Z/mZ. Therefore n is a
zero-divisor and thus m,n fails to be regular.

(c) Any field K has no regular sequences, because K \ {0} = K×, so kK = K for all k 6= 0.
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(d) The quotient ring R = K[x]/(x2) has no regular sequences, because the non-units of R are of the form
ax for some a ∈ K and ax · x = 0 implies ax ∈ ZDR(R).

def102917c Definition II.C.5.4. An M -regular sequence x1, . . . , xn ∈ I ≤ R is a maximal M -regular sequence in
I if for any xn+1 ∈ I, the sequence x1, . . . , xn+1 is not M -regular.

rmk102917b Remark II.C.5.5. If R is noetherian and M an R-module, then for any I � R, M has a maximal regular
sequence in I. Moreover every M -regular sequence in I ≤ R extends to a maximal M -regular sequence in I,
which we prove here.

Proof. Let x = x1, . . . , xn ∈ I be an M -regular sequence and suppose for any N > n and any
xn+1, . . . , xN ∈ I such that the sequence x = x1, . . . , xN is regular, x is not maximal. Then for any N > n

there exists some xN+1 ∈ I such that x, xN+1 is regular. Define Ik = 〈x1, . . . , xk〉 and consider the chain

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

which we claim is made of proper containments. We need to show xk+1 /∈ Ik for any k. If we suppose
otherwise, then xk+1 ·M/IkM = 0, which violates the regularity of the sequence in a big way. Therefore we
have exhibited a chain

I1 ( I2 ( I3 ( · · · ⊆ R

that does not stabilize, contradicting the fact that R is noetherian. Therefore x must extend to a maximal
regular sequence. �

rmk102917d Remark II.C.5.6. If (R,m) is a local, noetherian, ring and M 6= 0 is a finitely generated R-module,
then we have an algorithm for finding maximal M -regular sequences.

Step 1: If m ∈ Ass(M), then m ⊆ ZDR(M) by Corollary II.C.4.3, so the empty set is a maximal M -regular
sequence and we can therefore stop.

Step 2: Assume m /∈ Ass(M), i.e., m 6⊆ p for any p ∈ Ass(M). Then by prime avoidance

m 6⊆
⋃

p∈Ass(M)

p =⇒ ZDR(M) =
⋃

p∈Ass(M)

p ( m.

Hence there exits an element x1 ∈ m \ ZDR(M) (i.e., x1 ∈ m \ p for all p ∈ Ass(M)).

Step 3: Repeat Steps 1 and 2 with the module M/x1M in place of M . If m ∈ Ass(M/x1M), then x1 is
a maximal M -regular sequence, so we stop. Otherwise there exists some x2 ∈ m such that x2 /∈ p for all
p ∈ Ass(M/x1M).

Step 4: Repeat Steps 1 and 2 with M/(x1, x2)M . And so on.

By the proof of Remark II.C.5.5, this process must terminate after finitely many steps.

Associated primes are indispensable for the proof of Theorem II.C.5.16, though their use is a bit hidden.
The point of the following lemma is to give in part (b) a context in which they are a bit easier to write down.

lem102917f Lemma II.C.5.7. Let R be a non-zero, noetherian, commutative ring with identity and let I � R be a
proper ideal.

lem102917f.a (a) rad(I) =
⋂

p∈V (I)

p =
⋂

p∈Ass(R/I)

p =
⋂

p∈MinR(R/I)

p

lem102917f.b (b) If I is the intersection of a finite number of prime ideals, then

Ass(R/I) = MinR(R/I) = {minimum elements in the intersection defining I}.

lem102917f.c (c) If I is an intersection of prime ideals, then it is the intersection of a finite number of prime ideals.
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Proof. (a) This is justified by the following string of containments.

rad(I) =
⋂

p∈V (I)

p II.C.2.6

=
⋂

p∈supp(R/I)

p II.C.2.11

⊆
⋂

p∈Ass(R/I)

p II.C.2.19

⊆
⋂

p∈MinR(R/I)

p II.C.3.16

⊆
⋂

p∈supp(R/I)

p II.C.3.13

Hence we have equality at every step.

(b) Assume I =
⋂n
i=1 pi and re-order if necessary to assume p1, . . . , pj are the minimal elements in {p1, . . . , pn}

with respect to containment. Therefore I =
⋂j
i=1 pi and we first claim p1, . . . , pj ∈ MinR(R/I). By 4 in

Remark II.C.2.11 and Proposition II.C.3.13 we have

MinR(R/I) = Min(supp(R/I)) = Min(V (I))

(see also Definition II.C.3.16) so it suffices to show pi is minimal in V (I) for each i = [j]. We know pk ∈ V (I)

for any k ∈ [j] since each contains the intersection ∩ji=1pi, which is precisely I. To show minimality suppose
p ∈ V (I) such that p ⊆ pi. Observe the following with the product of prime ideals.

p1 · · · pj ⊆
j⋂

k=1

pk = I ⊆ p ⊆ pi

The fact that p is prime implies there exists some index l ∈ [j] such that pl ⊆ p ⊆ pi, but since pi is minimal
among the pk’s, we know pi ⊆ pl. Therefore we have

pl ⊆ p ⊆ pi ⊆ pl

forcing equality at every step and hence p = pi. By this argument and by Definition II.C.3.16, we have
shown

{minimal elements in the intersection defining I} = {p1, . . . , pj}
⊆ Min(V (I))

= MinR(R/I)

⊆ Ass(R/I).

So to complete the proof of this part it suffices to show Ass(R/I) ⊆ {p1, . . . , pj}. Let p ∈ Ass(R/I) and by
definition of being an associated prime there exists some 0 6= x ∈ R/I such that p = AnnR(x). By definition
of what it means to be zero in the quotient module R/I we have

px ⊆ I =

j⋂
i=1

pj .

Since x is non-zero, x /∈ I, so there exists some k ∈ [j] such that x /∈ pk. Rewriting our last line we have

px ⊆ I =

j⋂
i=1

pj ⊆ pk

where the fact that pk is prime implies p ⊆ pk (if x isn’t in pk, then p must be). Since we have already shown
the minimal elements of the intersection defining I (pk in particular) are also in MinR(R/I), this implies
p = pk and completes the proof of part (b).
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(c) If I is the intersection of prime ideals, say pλ for λ ∈ Λ, then we have⋂
λ∈Λ

pλ = I ⊆ rad(I) =
⋂

p∈MinR(R/I)

p ⊆
⋂
λ∈Λ

pλ

and equality at every step follows. Since MinR(R/I) is finite by Corollary II.C.3.4, part (c) holds. �

ex102917e Example II.C.5.8. Let K be a field, let R = K[x, y](x,y), which is a local ring with unique maximal
ideal m = (x, y)R, and define the R-module M = R/(xy)R. We will use the steps in Remark II.C.5.6 to
find a maximal M -regular sequence. We know (x)R = AnnR(y) and (y)R = AnnR(x), for x, y ∈ M , so
(x)R, (y)R ∈ Ass(M). It is straight forward to show (xy)R = (x)R ∩ (y)R, so we actually have Ass(M) =
{(x)R, (y)R} by Lemma II.C.5.7(b). Since m /∈ Ass(M), we need to find an element

a1 ∈ (x, y)R \ [(x)R ∪ (y)R].

That is, we want to find a1 = fx + gy such that x - a1 and y - a1, for some f, g ∈ R. In particular we can
take a1 = x− y.

For Step 3, we first repeat Step 1 with the module M/a1M , so we need to determine if m ∈ Ass(M/a1M).
Observe

M

a1M
=

R/(xy)R

(x− y) ·R/(xy)R
∼=

R

(x− y, xy)R
∼=

R/(x− y)R

(xy) ·R/(x− y)R

where
R

(x− y)R
=

K[x, y](x,y)

(x− y)K[x, y](x,y)

∼= K[x](x).

Colloquially, the last isomorphism above holds because setting x− y = 0 is the same as setting x = y. This
gives

M

a1M
∼=

K[x](x)

x2 ·K[x](x)
. (II.C.5.8.1) eqn041018a

We will now argue

AnnR

(
x ∈ M

a1M

)
= (x, y)R

and will thereby have showed m ∈ Ass(M/a1M). Since x = y we have

y · x = x · x = x2 = 0 ∈M/a1M

by Equation (II.C.5.8.1) and therefore (x, y)R ⊆ AnnR(x). Moreover we know x 6= 0 ∈M/a1M by Equation
(II.C.5.8.1), implying AnnR(x) 6= R and in fact the maximality of (x, y)R implies m = (x, y)R = AnnR(x).
Hence m ∈ Ass(M/a1M) and we can stop. That is, x− y is a maximal M -regular sequence in M of length
1.

We shall assume the following fact without proof (for the moment) and use it to prove the subsequent
fact. (See Discussion II.E.2.3 for existence of the induced maps.)

fact110117a Fact II.C.5.9. Let f : A −→ A′ and g : B −→ B′ R-module homomorphisms. For any i ≥ 0, there exist
R-module homomorphisms

ExtiR(A, g) : ExtiR(A,B) // ExtiR(A,B′)

ExtiR(f,B) : ExtiR(A′, B) // ExtiR(A,B).

If f ′ : A′ −→ A′′ and g′ : B′ −→ B′′ are also two R-module homomorphisms, then the following diagrams
commute.

ExtiR(A,B)
ExtiR(A,g) //

ExtiR(A,g′◦g)
&&

ExtiR(A,B′)

ExtiR(A,g′)

��

�

ExtiR(A′′, B)
ExtiR(f ′,B) //

ExtiR(f ′◦f,B)

&&

ExtiR(A′, B)

ExtiR(f,B)

��

�

ExtiR(A,B′′) ExtiR(A,B)

Colloquially, we are saying that ExtiR(A,−) and ExtiR(−, B) each respect compositions.

Next, we use this fact to establish the following.
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fact110117b Fact II.C.5.10. If A, A′, B, and B′ are all R-modules, then

ExtiR(A, 0BB′) = 0 = ExtiR(0AA′ , B)

where 0BB′ denotes the zero map from B into B′ and 0AA′ denotes the zero map from A into A′.

Proof. As silly as it looks to write down, we begin with the following commutative diagram.

A
0A0 //

0A
A′   

0

00
A′

��

�

A′

From Fact II.C.5.9, the following diagram also commutes.

ExtiR(A′, B)
ExtiR(00

A′ ,B)
//

ExtiR(0A
A′ ,B)

&&

ExtiR(0, B)

ExtiR(0A0 ,B)

��

�

ExtiR(A,B)

Since ExtiR(0, B) = 0 by Proposition II.B.1.12, the commutivity of the diagram forces ExtiR(0AA′ , B) = 0 as
well.

In a similar fashion, we have two more commutative diagrams.

B
0B0 //

0B
B′   

0

00
B′

��

�

B′

=⇒ ExtiR(A,B)
ExtiR(A,0) //

ExtiR(A,0BB′)
&&

ExtiR(A, 0)

ExtiR(A,0)

��

�

ExtiR(A,B′)

From the second diagram we conclude ExtiR(A, 0BB′) = 0 as desired, using similar reasoning as before. �

Similarly, we assume the next fact without proof and use it to prove the subsequent one. See Discus-
sion II.E.2.4 for some justification of Fact II.C.5.11.

fact110117c Fact II.C.5.11. Let r ∈ R and let A,B be R-modules. The multiplication map

µBr : B // B

b � // rb

is a well-defined R-module homomorphism (cf. Notation II.B.1.8). The induced maps

ExtiR(A,µBr ) : ExtiR(A,B)
r· // ExtiR(A,B)

ExtiR(µAr , B) : ExtiR(A,B)
r· // ExtiR(A,B)

from Fact II.C.5.9 are the multiplication maps µ
ExtiR(A,B)
r and µ

ExtiR(A,B)
r . That is, the map on Ext induced

by a multiplication map is itself a multiplication map.

fact110117d Fact II.C.5.12. Given the two identity maps idA : A −→ A and idB : B −→ B, we have

ExtiR(idA, B) = idExtiR(A,B) = ExtiR(A, idB).

Proof. This is essentially a corollary of Fact II.C.5.11.

ExtiR(idA, B) = ExtiR(µA1 , B) = µ
ExtiR(A,B)
1 = idExtiR(A,B)

ExtiR(A, idB) = ExtiR(A,µB1 ) = µ
ExtiR(A,B)
1 = idExtiR(A,B)

�
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We will see all four of the above facts again in II.E.2, where we will justify Facts II.C.5.9 and II.C.5.11,
and where we will give alternative proofs of Facts II.C.5.10 and II.C.5.12. For now, we use them to prove a
lemma.

lem110217a Lemma II.C.5.13. If M and N are R-modules, then for all i ≥ 0 we have

(AnnR(M) ∪AnnR(N)) ⊆ AnnR
(
ExtiR(M,N)

)
.

That is, if x ∈ R such that xM = 0 or xN = 0, then x · ExtiR(M,N) = 0.

Proof. Let x ∈ R and assume xM = 0. Therefore µMx = 0MM and applying Facts II.C.5.10 and II.C.5.11
we have

µ
ExtiR(M,N)
x = ExtiR(µMx , N) = ExtiR(0MM , N) = 0.

The proof is done similarly if y ∈ R such that yN = 0. �

ex110217b Example II.C.5.14. If m,n ∈ Z (not both 0) and g = gcd(m,n), then we first claim that

Ext1
Z(Z/mZ,Z/nZ) ∼= Z/gZ.

We take a projective resolution of Z/mZ, truncate it, and apply the functor HomR(−,Z/nZ).

0 // Z
m· // Z

τ // Z/mZ // 0

0 // Z
m· // Z // 0

0 // HomZ(Z,Z/nZ)
(m·)∗ // HomZ(Z,Z/nZ) // 0

By Hom-cancellation the final sequence is isomorphic to

0 // Z/nZ
m· // Z/nZ // 0 // · · · .

Thus we compute

Ext1
Z(Z/mZ,Z/nZ) =

Ker Z/nZ // 0

Im Z/nZ
m· // Z/mZ

=
Z/nZ

m · (Z/nZ)
=

Z/nZ

(m,n)Z/nZ
=
Z/nZ

gZ/nZ
∼= Z/gZ.

Note since Z/gZ is annihilated by both m and n, it is also annihilated by mZ∪nZ, so as separate verification
of the conclusion of Lemma II.C.5.13 in this special case, we note

AnnZ(Z/mZ) ∪AnnZ(Z/nZ) = mZ ∪ nZ ⊆ AnnZ(Z/gZ) ⊆ AnnZ(ExtiZ(Z/mZ,Z/nZ)).

rmk110217c Remark II.C.5.15. In general, if M and N are R-modules, then we at least have

AnnR(M) ∪AnnR(N) ⊆ AnnR(ExtiR(M,N))

but we cannot assume equality here. However, since this is true for all i ∈ Z, we can strengthen the conclusion
of the lemma to write

AnnR(M) ∪AnnR(N) ⊆
∞⋂
i=0

AnnR(ExtiR(M,N)).

For instance, in Example II.C.5.14 we have

Ext2
Z(Z/mZ,Z/nZ) = 0

and therefore
AnnZ

(
Ext2

Z(Z/mZ,Z/nZ)
)

= Z.

Yet notice
AnnZ(Z/mZ) + AnnZ(Z/nZ) = mZ+ nZ = gZ.

So if m and n are relatively prime, then g = 1 and we achieve the equality

AnnR(Z/mZ) ∪AnnR(Z/nZ) = gZ = Z = AnnR(ExtiZ(Z/mZ,Z/nZ)).

In general, however, gZ 6= Z. Thus equality in Lemma II.C.5.13 is achievable, but does not hold in general.

Here we finally achieve the goal of the chapter by characterizing depth in terms of vanishing Ext modules.
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DepthExt Theorem II.C.5.16. Assume R is noetherian, let I ≤ R be an ideal, and assume M is a finitely generated
R-module such that IM 6= M . Let n ≥ 0. The following are equivalent.

DepthExt.i (i) ExtiR(N,M) = 0 for all i < n and all finitely generated R-modules N satisfying
supp(N) ⊆ V (I).

DepthExt.ii (ii) ExtiR(R/I,M) = 0 for all i < n.
DepthExt.iii (iii) ExtiR(N,M) = 0 for all i < n and for some finitely generated R-module N satisfying

supp(N) = V (I).
DepthExt.iv (iv) Every M -regular sequence in I of length no greater than n can be extended to an M -regular sequence

in I of length equal to n.
DepthExt.v (v) M has a regular sequence in I of length n.

Proof. Since supp(R/I) = V (I) by Remark II.C.2.11, (i) implies (ii) and (ii) implies (iii) are already
done (consider N = R/I). To show (iii) implies (iv), assume N is a finitely generated R-module with
supp(N) = V (I) such that ExtiR(N,M) = 0 for all i < n. Since the case n = 0 is trivial we assume
n ≥ 1. Therefore by assumption HomR(N,M) ∼= Ext0

R(N,M) = 0 and it follows from Lemma II.C.4.19 that
I 6⊆ ZDR(M), i.e., there exists a1 /∈ ZDR(M) ∩ I. Now we induct on n. If n = 1, then we’re done since if
we start with a sequence of length 0, we can extend to a1 and if we start with a sequence of length 1, we
needn’t extend at all.

Assume n ≥ 2 and the result holds for all finitely generated R-modules M ′ satisfying
ExtiR(N,M ′) = 0 for all i < n− 1. Let a1, . . . , ak ∈ I be an M -regular sequence with k ≤ n. If k = n, then
we’re done. If k = 0, then we already know there exists an M -regular element a1 ∈ I from which we would
start our sequence, so assume 1 ≤ k ≤ n− 1. The sequence

0 // M
a1· // M // M/a1M // 0

is exact and yields the long exact sequence (II.C.5.16.1) from which it follows

ExtiR(N,M/a1M) = 0

for all i < n− 1 (i.e., whenever i+ 1 < n). We assumed a1, . . . , ak is M -regular, so a2, . . . , ak is a M/a1M -
regular sequence of length k − 1 < n − 1. Therefore under our induction hypothesis we may extend to a
M/a1M -regular sequence a2, . . . , ak, . . . , an of length n − 1. Hence to conclude a1, . . . , an ∈ I is M -regular
of length n and thus complete the proof of this implication, it suffices to show I ·M/a1M 6= M/a1M . Indeed
since IM 6= M we have

I · M

a1M
=

IM

a1M
6= M

a1M
.

0 // HomR(N,M)
a1· // HomR(N,M) // HomR(N,M/a1M)

// Ext1
R(N,M)

a1· // · · ·

· · · a1· // ExtiR(N,M)
=0

// ExtiR(N,M/a1M)
∴=0

// Exti+1
R (N,M)

=0

a1· // · · ·

· · · a1· // Extn−1
R (N,M) // Extn−1

R (N,M/a1M)

// ExtnR(N,M) // · · ·

(II.C.5.16.1) eqn041018c
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To show (iv) implies (v), we simply point out that if we assume (iv), then the empty sequence can be
extended to an M -regular sequence of length n.

Proving (v) implies (i) is again by induction. Assume M has a regular sequence a1, . . . , an ∈ I and let
N be a finitely generated R-module such that supp(N) ⊆ V (I). We want to show ExtiR(N,M) = 0 for all
i < n. In the case when n = 1, our sequence is merely the element a1 ∈ I. By Remark II.C.2.11 and our
assumption we have

V (AnnR(N)) = supp(N) ⊆ V (I)

so by Lemma II.C.2.7 we have at1 ∈ It ⊆ AnnR(N) (i.e., at1N = 0) for all t sufficiently large. By construction
the sequence

0 // M
a1· // M // M/a1M // 0

is exact. By the left exactness of HomR(N,−), this implies the sequence

0 // HomR(N,M) �
� a1· // HomR(N,M)

is also exact, as is the sequence

0 // HomR(N,M) �
� at1· // HomR(N,M)

for all t ≥ 1, since the composition of injective functions is still injective. Since at1· is the (injective) zero
map for all sufficiently large t by Lemma II.C.5.13, we conclude HomR(N,M) = 0 as desired and we let this
serve as the base case.

Assume n ≥ 2 and the result holds for all i < n − 1. We want to show Extn−1
R (N,M) = 0. Let

a1, . . . , an−1 ∈ I be an M -regular sequence guaranteed by (v). By our induction hypothesis ExtiR(N,M) = 0
for all i < n−1 and we also know I contains an M/a1M -regular sequence of length n−1, namely a2, . . . , an.
Our induction hypothesis again implies

ExtiR(N,M/a1M) = 0

for all i < n− 1. In particular, Extn−2
R (N,M/a1M) = 0 and therefore we have

· · · // 0 // Extn−1
R (N,M) �

� a1· // Extn−1
R (N,M) // · · ·

by the exactness of the sequence (see (II.C.5.16.1)). Since the composition of injective functions yields an
injective function, the sequence

0 // Extn−1
R (N,M) �

� at1· // Extn−1
R (N,M)

is also exact for any t > 0. As in the base case we can take t� 0 such that at1 ·N = 0 and by Lemma II.C.5.13,
at1 ·Extn−1

R (N,M) = 0 as well. Thus we have an injective zero map, implying the domain must be zero, i.e.,

Extn−1
R (N,M) = 0 as desired. �

Exercises

exer170919a Exercise II.C.5.17. Let R be a non-zero commutative ring with identity. Let M,M ′, N,N ′ be R-
modules, and let U ⊆ R be a multiplicatively closed subset. Let f : M → M ′ and g : N → N ′ be R-
modules. Recall the U−1R-module homomorphism ΘU,M,N : U−1 HomR(M,N)→ HomU−1R(U−1M,U−1N)
from Proposition II.C.1.8. Prove that the following diagrams commute.

U−1 HomR(M,N)
U−1 HomR(M,g) //

ΘU,M,N

��

U−1 HomR(M,N ′)

ΘU,M,N′

��
HomU−1R(U−1M,U−1N)

HomU−1R U
−1M,U−1g)// HomU−1R(U−1M,U−1N ′)

U−1 HomR(M ′, N)
U−1 HomR(f,N) //

ΘU,M′,N

��

U−1 HomR(M,N)

ΘU,M,N

��
HomU−1R(U−1M ′, U−1N)

HomU−1R(U−1f,U−1N)// HomU−1R(U−1M,U−1N)
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exer170919b Exercise II.C.5.18. Let A be an integral domain, and consider the polynomial ring R = k[X,Y ] and
the ideal I = (X2, XY )R.

exer170919b1 (a) Prove that rad(I) = XR. Conclude that SuppR(R/I) = V (XR).
exer170919b2 (b) Prove that the prime ideals XR and (X,Y )R are in AssR(R/I).

exer170919c Exercise II.C.5.19. Let R be a commutative ring, and let r ∈ R be an R-regular element, that is, a
non-unit that is not a zero-divisor on R. Prove that AssR(R/rnR) = AssR(R/rR) for all n ≥ 1. [Hint:
Verify that the following sequence is exact:

0→ R/rR
rn−1

−−−→ R/rnR −→ R/rn−1R→ 0

and use induction on n.]

exer171004a Exercise II.C.5.20. Let R be a commutative ring, and let M and N be R-modules.

exer171004a3 (a) Prove that if M and N are non-zero free R-modules, then M ⊗R N 6= 0. [Hint: There are surjections
M → R and N → R. Combine these and use the right-exactness of tensor product to obtain a surjection
M ⊗RN → R⊗RR ∼= R 6= 0.] In particular, if k is a field and V and W are non-zero vector spaces over
k, then V ⊗k W 6= 0.

exer171004a1 (b) [Reading exercise] Let I ⊆ R be an ideal. Recall that there is anR/I-module isomorphism (R/I)⊗RM
∼=−→

M/IM such that (r + I)⊗m 7→ (rm) + IM . Thus, we have isomorphisms

(M/IM)⊗R/I (N/IN) ∼= ((R/I)⊗RM)⊗R/I ((R/I)⊗R N)

∼= (((R/I)⊗RM)⊗R/I (R/I))⊗R N associativity

∼= ((R/I)⊗RM)⊗R N cancellation

∼= (R/I)⊗R (M ⊗R N) associativity

∼= (M ⊗R N)/I(M ⊗R N)

exer171004a2 (c) Let U ⊆ R be a multiplicatively closed subset. Recall that there is a U−1R-module isomorphism

(U−1R)⊗RM
∼=−→ U−1M such that (r/u)⊗m 7→ (rm)/u. Using this, argue as in part (b) to show that

there is a U−1R-module isomorphism (U−1M)⊗U−1R (U−1N) ∼= U−1(M ⊗RN). In particular, for each
prime ideal P ∈ Spec(R), there exists an RP -module isomorphism MP ⊗RP NP ∼= (M ⊗R N)P .

exer030206 Exercise II.C.5.21. Let R be a commutative local ring. Let M and N be non-zero finitely generated
R-modules. Prove that, M ⊗R N 6= 0. [Hint: Exercise II.C.5.20(a)–(b) and Nakayama’s Lemma.]

exer030297’ Exercise II.C.5.22. Let R be a commutative ring, and let M and N be finitely generated R-modules.

exer030297’z (a) Prove that for each multiplicatively closed subset U ⊆ R, the modules U−1M and U−1N are finitely
generated over U−1R. In particular, for each prime ideal P ∈ Spec(R), the modules MP and NP are
finitely generated over RP .

(b) Prove that SuppR(M ⊗R N) = SuppR(M) ∩ SuppR(N). [Hint: Part (a) and Exercises II.C.5.20(c)
and II.C.5.21.]

exer030505 Exercise II.C.5.23. Let R be a non-zero commutative noetherian ring with identity, and let M be a
finitely generated R-module. Let I = (a1, . . . , an)R be an ideal of R such that IM 6= M . Prove that if
a1, . . . , an is M -regular, then a1, . . . , an is a maximal M -regular sequence in I.

exer030505z Exercise II.C.5.24. Let R be a non-zero commutative ring with identity, and let X be an R-module.

(a) Prove that X = 0 if and only if the sequence 0→ X → 0 is exact.
(b) Let 0 → X ′ → X → X ′′ → 0 be an exact sequence of R-modules. Prove that X = 0 if and only if

X ′ = 0 = X ′′.

exer030506 Exercise II.C.5.25 (Depth Lemma). Let R be a non-zero commutative noetherian ring with identity,
and let 0 → M ′ → M → M ′′ → 0 be an exact sequence of finitely generated R-modules. Let I ⊆ R be an
ideal, and prove the following inequalities:

depthR(I,M) ≥ inf{depthR(I,M ′),depthR(I,M ′′)}
depthR(I,M ′) ≥ inf{depthR(I,M),depthR(I,M ′′) + 1}
depthR(I,M ′′) ≥ inf{depthR(I,M ′)− 1,depthR(I,M)}.

(Hint: Long exact sequence in Ext with Exercise II.C.5.24.)



CHAPTER II.D

Homology

chapter062921c
The ultimate goal of the next three chapters is to prove the well-definedness of Ext and the existence

of long exact sequences as described in Theorem II.B.1.1. We begin by introducing some of the basics of
homology.

II.D.1. Chain Complexes and Homology
section062921p

In this section we define chain complexes and homology modules. We present some of their basic charac-
teristics and show in Theorem II.D.1.9 that they play well with Hom modules. We also see in Example II.D.1.7
is that Ext modules are specific homology modules.

def110417a Definition II.D.1.1. A chain complex of R-modules and R-module homomorphisms, also known as an
R-complex, is a sequence

M• = · · ·
∂Mi+2 // Mi+1

∂Mi+1 // Mi

∂Mi // Mi−1

∂Mi−1 // · · ·

of R-modules and R-module homomorphisms such that ∂Mn ◦ ∂Mn+1 = 0 for all n ∈ Z. The map ∂Mi is the ith

differential of the complex and

Hi(M•) =
Ker ∂Mi
Im ∂Mi+1

is the ith homology module of M•. Note this quotient makes sense to write down since Im ∂Mi+1 ⊆ Ker ∂Mi if

and only if ∂Mi ◦ ∂Mi+1 = 0.

rmk110417b Remark II.D.1.2. An R-complex M• is exact if and only if Hi(M•) = 0 for all i ∈ Z. Colloquially,
Hi(M•) measures how far M• is from being exact at the ith position, Mi.

ex110417c Example II.D.1.3. Let M be an R-module and let P+
• be an augmented projective resolution of M .

P+
• = · · ·

∂P3 // P2

∂P2 // P1

∂P1 // P0
τ // M // 0

P• = · · ·
∂P3 // P2

∂P2 // P1

∂P1 // P0
// 0

Since P+
• is exact, it is also an R-complex with Hi(P

+
• ) = 0 for all i ∈ Z. On the other hand, while P•

is not exact, it is still an R-complex since ∂Pi ◦ ∂Pi+1 = 0 for all positive i and for all negative i we have

∂Pi ◦ ∂Pi+1 = 0 ◦ ∂Pi+1 = 0. Therefore Hi(P•) = 0 for all i 6= 0 and leveraging the exactness of P+
• we have

H0(P•) =
KerP0 −→ 0

Im ∂P1
=

P0

Ker τ
∼= Im τ = M.

Conversely, if the sequence

Q• = · · ·
∂Q3 // Q2

∂Q2 // Q1

∂Q1 // Q0
// 0

is an R-complex such that each Qi is projective and Hi(Q•) = 0 for all i 6= 0, then Q• is a projective
resolution of the homology module H0(Q•).

Proof. Note that

H0(Q•) =
KerQ0 −→ 0

Im ∂Q1
=

Q0

Im ∂Q1
.

Denote the natural epimorphism

π : Q0 −→
Q0

Im ∂Q1

69
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which once adjoined to Q• gives the exact sequence

Q+
• = · · ·

∂Q3 // Q2

∂Q2 // Q1

∂Q1 // Q0
π // Q0

Im ∂Q1

// 0

completing the proof. �

def110417d Definition II.D.1.4. Let M• be an R-complex and let N be an R-module. We define lower star and
upper star on R-complexes as we did with exact sequences. Define

M•∗ = HomR(N,M•) = · · ·
(∂Mi+2)∗// HomR(N,Mi+1)

=(Mi+1)∗

(∂Mi+1)∗
∂Mi+1◦(−)

// HomR(N,Mi)
=(Mi)∗

(∂Mi )∗ // · · ·

M∗• = HomR(M•, N) = · · ·
(∂Mi−1)

∗

// HomR(Mi−1, N)
=(Mi−1)∗

(∂Mi )
∗

(−)◦∂Mi
// HomR(Mi, N)

=(Mi)∗

(∂Mi+1)
∗

// · · ·

where (
∂Mi
)
∗ = HomR(N, ∂Mi )

(
∂Mi
)∗

= HomR(∂Mi , N).

prop110417e Proposition II.D.1.5. Both M•∗ and M∗• are R-complexes.

Proof. The argument is written succinctly as follows.

(∂Mi )∗ ◦ (∂Mi−1)∗ = (∂Mi−1 ◦ ∂Mi )∗ = 0∗ = 0

(∂Mi )∗ ◦ (∂Mi+1)∗ = (∂Mi+1 ◦ ∂Mi )∗ = 0∗ = 0

�

notn110417f Notation II.D.1.6. We add some more short-hand.

(M∗)i = Mi∗ ∂M∗i = (∂Mi )∗

(M∗)j = (M−j)
∗ ∂M

∗

j = (∂M−j+1)∗

ex110417g Example II.D.1.7. Let M and N be R-modules and let P• be a projective resolution of M . Observe
that the indices for the projective resolution are decreasing, whereas after applying HomR(P•, N) to get P ∗•
the indices are increasing.

P• = · · ·
∂P3 // P2

∂P2 // P1

∂P1 // P0
// 0

P ∗• = 0 // P ∗0
(∂P1 )∗ // P ∗1

(∂P2 )∗ // P ∗2
(∂P3 )∗ // · · ·

From Definition II.D.1.1, when calculating homology modules we require decreasing indices, so in the case
when we want Hj(P•), the indices line up nicely.

Hj(P•) =
Ker ∂Pj
Im ∂Pj+1

To put P ∗• in the form of having decreasing indices, we can define k = −i and set Mk = P ∗−k in order to
write the following.

P ∗• = 0 //
‖

P ∗0
(∂P1 )∗ //

‖
P ∗1

(∂P2 )∗ //
‖

P ∗2
(∂P3 )∗ //

‖
· · ·

M1 M0 M−1 M−2

Hence building the ith homology module from these Mi amounts to finding Ext−iR (M,N), i.e.,

Hi(P
∗
• ) = Hi(HomR(P•, N)) = Ext−iR (M,N).

We can align the homology modules with their respective projective modules in P ∗• to make this even clearer.

P ∗• = 0 // P ∗0 // P ∗1 // P ∗2 // · · · // P ∗i // · · ·

H0(P ∗• ) H−1(P ∗• ) H−2(P ∗• ) H−i(P
∗
• )
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lem042818a Lemma II.D.1.8. Assume we have the following commutative diagram of R-modules and R-module ho-
momorphisms where the upper and lower horizontal sequences are exact, as are the diagonal sequences.

0 0

��
A

__

0 H
ν

~~

oo I
µoo

^^

B

α

__

�

C

σ
��

βoo

�

D
γ

oo

θ

__

0 E

ε

``

oo F
ζ

oo

��

G
ρ

oo 0oo

0

__

If β ◦ γ = 0, then G ∼=
ker(β)

Im γ
.

Proof. First, we claim that σ with domain restricted to ker(β) surjects onto ker(ζ). We denote σ with

such a restriction as σ̂ : ker(β) // F and we want to show by mutual containment that

Im σ̂ = ker(ζ). (II.D.1.8.1) eqn042818b

Let c ∈ ker(β) and since β(c) = 0, by the commutivity of the diagram we also have ε(ζ(σ̂(c))) = 0. Since ε
is injective we have ζ(σ̂(c)) = 0 and therefore σ̂(c) ∈ ker(ζ). This takes care of the forward containment of
Equation (II.D.1.8.1).

Let f ∈ ker(ζ) and it follows ε(ζ(f)) = ε(0) = 0 ∈ B. Since σ is surjective, there exists some c ∈ C
such that σ(c) = f . By the commutivity of the diagram β(c) = 0, so σ̂ is defined at c and moreover

f = σ(̂c) ∈ Im σ̂. This handles the reverse containment and thus Equation (II.D.1.8.1) is proven.
For our second claim, we will show

ker(σ̂) = Im γ (II.D.1.8.2) eqn042818c

again by mutual containment. Let c ∈ ker(σ̂) ⊆ ker(σ) = Im ν and let h ∈ H such that ν(h) = c. Since µ
and θ are each surjective, choose i ∈ I such that µ(i) = h and choose d ∈ D such that θ(d) = i. By the
commutivity of the diagram we have γ(d) = ν(µ(θ(d))) = c and therefore c ∈ Im γ, justifying the forward
containment of Equation (II.D.1.8.2).

Now let d ∈ D and set c = γ(d). By the commutivity of the diagram ν(µ(θ(d))) = c, so c ∈ Im ν = ker(σ)
and σ(c) = 0. Moreover, β(c) = ε(ζ(σ(c))) = 0 by the commutivity of the diagram as well. Thus c ∈ ker(β)
so σ̂ is defined at c with σ̂(c) = 0 and therefore c ∈ ker(σ̂). This completes our justification of Equation
(II.D.1.8.2).

By the First Isomorphism Theorem, and Equations (II.D.1.8.1) and (II.D.1.8.2), we have

ker(β)

Im γ
=

ker(β)

ker(σ̂)
∼= Im σ̂ = ker(ζ).

By the exactness of the bottom row we also have

ker(β)

Im γ
∼= Im ρ

and since ρ is injective the apply the First Isomorphism Theorem again to conclude

ker(β)

Im γ
∼= G.

�

thm110417h Theorem II.D.1.9. Let M• be an R-complex and let N be an R-module.

thm110417h.a (a) If N is projective, then Hi(HomR(N,M•)) ∼= HomR(N,Hi(M•)).
thm110417h.b (b) If N is injective, then Hi(HomR(M•, N)) ∼= HomR(H−i(M•), N).

We also write each of these colloquially.
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(a) ‘Homming’ with a projective module in the first slot commutes with taking homology.
(b) ‘Homming’ with an injective module in the second slot commutes with taking homology, as long as we

are careful about indices.

Proof. (a) Consider the following diagram.

0

��

0

��
Ker ∂i+1

M

⊆
εi+1

��

0 // Im ∂Mi

CC

⊆
αi
// Ker ∂Mi−1

⊆

εi−1

��
Mi+1

∂Mi+1 //

δMi+1 ��

�

Mi

δMi

AA

∂Mi

//

�

Mi−1

0 // Im ∂Mi+1

αi+1

⊆
//

��

Ker ∂Mi

⊆
εi

BB

τi // Hi(M•) // 0

0

CC

(II.D.1.9.1) eqn210725a

where δMi is the map induced by ∂Mi and τi is the natural surjection. The diagonals are all exact, as is the
lower horizontal sequence. Moreover, HomR(N,−) = (−)∗ is exact, because N is projective. Therefore we
have the commutative diagram given below.

0

��

0

��
Ker ∂i+1

M ∗

(εi+1)∗ !!

Im ∂Mi ∗

BB

(αi)∗

// Ker ∂Mi−1∗

(εi−1)∗

��
(Mi+1)∗

(∂Mi+1)∗ //

(δMi+1)∗ !!

�

(Mi)∗

(δMi )∗

??

(∂Mi )∗

//

�

(Mi−1)∗

0 // Im ∂Mi+1∗
(αi+1)∗//

��

Ker ∂Mi ∗

(εi)∗

??

(τi)∗ // Hi(M•)∗ // 0

0

BB

(II.D.1.9.2) eqn210725b

Since the exactness of the lower horizontal sequence is preserved, we claim the following is an isomorphism
of short exact sequences, where ε and π are the natural injection and surjection, respectively.

0 // Im ∂Mi+1∗
(αi+1)∗ //

β∼=

��

�

Ker ∂Mi ∗
(τ)∗ //

γ∼=

��

s.t. �

Hi(M•)∗ //

∴∃θ∼=

��

0

0 // Im (∂Mi+1)∗ ε
// Ker (∂Mi )∗ π

// Hi(M•∗) // 0

(II.D.1.9.3) eqn091218b

The map γ is induced by (εi)∗ and is well-defined, because of diagram (II.D.1.9.2) above. It is also a
monomorphism, because (εi)∗ is a monomorphism. Moreover it is onto, which one can see from a standard
diagram chase. The map β is induced by (εi)∗ ◦ (αi+1)∗ and is an isomorphism for similar reasons as γ. Also,
it is straightforward to show that the left-hand square of (II.D.1.9.3) commutes. It follows that there exists
some θ making the right-hand square commute and θ is an isomorphism by the Short-Five Lemma. Since
(M•)∗ = HomR(N,M•), we have

Hi(HomR(N,M•)) = Hi(M•∗) ∼= Hi(M•)∗ = HomR(N,Hi(M•)).
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(b) Let i ∈ Z be given and we apply HomR(−, N) to commutative diagram (II.D.1.9.1), which preserves the
exactness and flips everything.

0

��

0

Ker ∂Mi−1
∗
(αi−1)∗

// //

99

Im ∂Mi
∗

(δMi )∗

��

// 0 Ker ∂Mi+1
∗

OO

· · · // (Mi−1)∗

(εi−1)∗
::

(∂Mi )∗
// (Mi)

∗

(εi)
∗

��

(∂Mi+1)∗

// (Mi+1)∗ //

(εi+1)∗
::

· · ·

0 // (Hi(M•))
∗

(τi)
∗
// Ker ∂Mi

∗
(αi+1)∗

//

��

Im ∂Mi+1
∗ //

(δMi+1)∗

;;

0

0

::

Therefore we have

(Hi(M•))
∗ = HomR(Hi(M•), N) ∼=

Ker (∂Mi+1)∗

Im (∂Mi )∗
Lemma II.D.1.8

=
Ker ∂M

∗

−i
Im ∂M

∗
−i+1

Notation II.D.1.6

= H−i(M
∗
• )

= H−i(HomR(M•, N)) Definition II.D.1.4

completing the proof of part (b). �

II.D.2. Ext Modules
section062921q

There are two main propositions in this section. We state formally in Proposition II.D.2.3 why one says
Ext detects whether a given module is projective. In Proposition II.D.2.8 we give conditions under which
we know Ext modules are finitely generated.

disc110417i Discussion II.D.2.1. We have already put a fair amount of time into describing ExtiR, so in this section
we add only a few more things. Let M be an R-module and P• a projective resolution of M . That is

P• = · · ·
∂P2 // P1

∂P1 // P0
// 0

P+
• = · · ·

∂P2 // P1

∂P1 // P0
τ // M // 0

where all Pi are projective and P+
• is exact. We saw in Example II.D.1.7 that

ExtiR(M,N) = H−i(HomR(P•, N))

for all i ∈ Z, where

HomR(P•, N) = P ∗• = · · · // 0 // P ∗0 // P ∗1 // P ∗2 // · · ·

position: −1 0 1 2

and the −ith module is built from the ith position of P ∗• , i.e.,

(P ∗• )i = P ∗−i.

The following theorem was previously stated as Fact II.B.1.13 and will be proven in Theorem II.F.5.2.

thm110417j Theorem II.D.2.2. If P• and Q• are two projective resolutions of M , then

H−i(HomR(P•, N)) ∼= H−i(HomR(Q•, N))

for all i ∈ Z. The slogan here is ‘ ExtiR(M,N) is independent of our choice of projective resolution.’
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prop110517a Proposition II.D.2.3. Let M and N be R-modules.

prop110517a.a (a) If M is projective, then ExtiR(M,N) = 0 for all i > 0.
prop110517a.b (b) If N is injective, then ExtiR(M,N) = 0 for all i > 0.

Proof. (a) Since M is projective, the augmented projective resolution and projective resolution are as
follows.

P+
• = · · · // 0 // 0 // M

id // M // 0

P• = · · · // 0 // 0 // M // 0

In practice, we stop writing terms for the projective resolution, but in reality we may write more completely

P• = · · · // 0 // 0 // M // 0 // · · · .

position: 2 1 0 −1

Since HomR(−, N) is arrow-reversing, this gives

P ∗• = · · · // 0 // M∗ // 0 // 0 // · · · .

position: −1 0 1 2

Therefore for all i > 0 we have as desired, namely

ExtiR(M,N) = H−i(0) = 0.

(b) Let P• be a projective resolution of M and we have the following.

ExtiR(M,N) = H−i(HomR(P•, N))
II.D.1.9∼= HomR(Hi(P•), N)

II.D.1.3∼= HomR(0, N), for all i > 0

II.B.1.12
= 0

�

The next several results set up the proof of Proposition II.D.2.8. We begin with a definition.

def082118b Definition II.D.2.4. Let R be a non-zero commutative ring with identity and let M be an R module.
M is a noetherian module if it satisfies the following equivalent conditions.

(i) Every submodule of M is finitely generated.
(ii) M satisfies the ascending chain condition for submodules.
(iii) Every nonempty set S of R-submodules of M has a maximal element. That is, there exists an element

N ∈ S such that for all N ′ ∈ S, if N ⊆ N ′, then N = N ′.

note082118a Note II.D.2.5. R is a noetherian ring if and only if R is noetherian as an R-module.

prop082018a Proposition II.D.2.6. Let R be a non-zero commutative ring with identity and consider an exact se-
quence

0 // M ′
f // M

g // M ′′ // 0

of R-modules and R-module homomorphisms. In this setting M is a noetherian module over R if and only
if M ′ and M ′′ are noetherian over R.

Proof. First assume that M is a noetherian R-module and let N ′ ⊂M ′ be a submodule. f(N ′) ⊂M is
a finitely generated submodule, since M is noetherian. Therefore since f is injective, N ′ is finitely generated
by the First Isomorphism Theorem. Since N ′ was arbitrarily taken, M ′ is noetherian.

Now consider an chain N ′′1 ⊂ N ′′2 ⊂ . . . of submodules of M ′′. Then there is a chain N1 ⊂ N2 ⊂ . . . of
submodules of M with Ni = g−1(N ′′i ). Since M is noetherian, there is some k ∈ N such that Nj = Nk for
all j ≥ k. Since g is surjective, g(Nj) = N ′′j for all j and we have

N ′′j = g(Nj) = g(Nk) = N ′′k

for all j ≥ k. Hence the chain N ′′1 ⊂ N ′′2 ⊂ . . . stabilizes and we conclude M ′′ is noetherian.
Second, we instead assume both M ′ and M ′′ are noetherian. We want to show an arbitrary submodule

N ⊆M is finitely generated. Since g(N) ⊆M ′′ as a submodule and M ′′ is noetherian, it is finitely generated.
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We let n1, . . . , np ∈ N such that g(N) = 〈g(n1), . . . , g(np)〉. Similarly, f−1(N) ⊆M ′ as a submodule and we
let m′p+1, . . . ,m

′
q ∈ M ′ such that f−1(N) =

〈
m′p+1, . . . ,m

′
q

〉
. We claim N = 〈n1, . . . , nq〉 where ni = f(m′i)

for every i = p+ 1, . . . , q. Since one containment is by choice of ni, it suffices to show N ⊆ 〈n1, . . . , nq〉. Let
n ∈ N be given. Then there exist r1, . . . , rp ∈ R such that

g(n) =

p∑
i=1

rig(ni) = g

(
p∑
i=1

rini

)
.

Since g is an R-module homomorphism it follows that

n−
p∑
i=1

rini ∈ ker(g) = Im f.

Moreover, since n −
∑p
i=1 rini ∈ N as well, we have an element x ∈ f−1(N) =

〈
m′p+1, . . . ,m

′
q

〉
such that

f(x) = n−
∑p
i=1 rini. So there are rp+1, . . . , rq ∈ R such that x =

∑q
i=p+1 rim

′
i. It follows that

n−
p∑
i=1

rini = f

 q∑
i=p+1

rim
′
i

 =

q∑
i=p+1

rif(m′i) =

q∑
i=p+1

rini

and therefore n =
∑q
i=1 rini. �

prop082018b Proposition II.D.2.7. Let R be a non-zero commutative ring with identity and let M be an R-module.

prop082018b.a (a) The following are equivalent.
prop082018b.a.i (i) M is noetherian over R.
prop082018b.a.ii (ii) Mn is noetherian over R for all n ∈ N.
prop082018b.a.iii (iii) Mn is noetherian over R for some n ∈ N.

prop082018b.b (b) The following are equivalent.
prop082018b.b.i (i) R is a noetherian ring.
prop082018b.b.ii (ii) Rn is noetherian over R for all n ∈ N.
prop082018b.b.iii (iii) Rn is noetherian over R for some n ∈ N.

prop082018b.c (c) In the case when R is a noetherian ring, the following are equivalent.
prop082018b.c.i (i) M is finitely generated over R.
prop082018b.c.ii (ii) M is noetherian over R.
prop082018b.c.iii (iii) M has a degree-wise finite free resolution, that is, there is an exact sequence

· · · // Rβ2 // Rβ1 // Rβ0 // M // 0

with each βi ∈ N0.

Proof. (a) Consider the following short exact sequence for any n > 1.

0 // Mn−1 // Mn // M // 0 m1

...
mn−1

 � //


m1

...
mn−1

0


m1

...
mn

 � // mn

If M is noetherian, then we apply Proposition II.D.2.6 to the short exact sequence above to conclude by
induction on n that Mn is noetherian for any n ≥ 1. Therefore (ai) implies (aii). The implication (aii)
implies (aiii) is trivial. If we assume Mn is noetherian for some n ∈ N, then applying the same exercise to
the same short exact sequence we conclude M is noetherian, so (aiii) implies (ai).
(b) By Note II.D.2.5, this is a corollary of part (a).
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(c) M is noetherian over R if and only if every submodule of M is finitely generated over R. In particular,
M is finitely generated since it is a submodule of itself, so (cii) implies (ci). From the exact sequence

· · · // Rβ1 // Rβ0
τ // M // 0

we can build a short exact sequence

0 // ker(τ)
⊂ // Rβ0

τ // M // 0 .

Since Rβ0 is noetherian by part (b), M is noetherian as well by Proposition II.D.2.6. Thus (ciii) implies (cii).
Now we assume M is finitely generated over R and we want to build a degree-wise finite free resolution

of M . Let m1, . . . ,mβ0
∈M be a set of generators for M and define the surjection

τ0 : Rβ0 // M∑β0

i=1 riei
� //∑β0

i=1 rimi

where e1, . . . , eβ0 is the standard basis of the free module Rβ0 , which is noetherian by part (b). Therefore the
submodule ker(τ0) ⊂ Rβ0 is finitely generated and we write ker(τ0) = (f1, . . . , fβ1)Rβ0 for some f1, . . . , fβ1 ∈
Rβ0 . We may then approximate ker(τ0) by the free module Rβ1 using the surjection

τ1 : Rβ1 // ker(τ0)∑β1

i=1 rie
′
i

� //∑β1

i=1 rifi

where e′1, . . . , e
′
β1

is the standard basis. Since Rβ1 is again noetherian, ker(τ1) is again finitely generated and
this process may continue.

For any j ≥ 1 define ∂j = τj ◦ Ij−1 where for any k ≥ 0 we define Ik to be the containment map from
ker(τk) into Rβk . Then we can build the following commutative diagram where the row is exact, because
the diagonals are exact by construction.

0

$$

0

ker(τ0)

::

I0

##
�

· · · // Rβ2
∂2 //

τ2
##

Rβ1

∂1

//

τ1
;;

Rβ0
τ0 //

τ0
!!

M // 0

ker(τ1)

I1

;;

$$

�

M

>>

  

�

0

::

0 0

�

prop110517b Proposition II.D.2.8. Let R be noetherian. If M and N are finitely generated R-modules, then ExtiR(M,N)
is finitely generated for all i ∈ Z.

Proof. Since R is noetherian and M is finitely generated, by Proposition II.D.2.7 M has a projective
resolution of the form

P• = · · · // Rβ2 // Rβ1 // Rβ0 // 0

where βi ∈ N0 for all i ∈ N. Therefore from Fact II.C.1.1 and from Hom-cancellation we have

HomR(Rβi , N) ∼= HomR(R,N)βi ∼= Nβi .
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Since N is finitely generated and R is noetherian, Nβi is also finitely generated and noetherian. Therefore

the submodule Ker ∂
P∗•
−i is finitely generated and hence so is the following.

Ker ∂
P∗•
−i

Im ∂
P∗•
−i+1

= H−i(P
∗
• ) = ExtiR(M,N)

�

Exercises

exer020212 Exercise II.D.2.9. Let R be a commutative noetherian ring with identity, and let M• be an R-complex.
Prove that, if i ∈ Z is such that Mi is finitely generated over R, then Hi(M•) is finitely generated over R.

exer020153s Exercise II.D.2.10. Prove Theorem II.D.1.9(b): Let R be a commutative ring with identity, and let
M• be an R-complex. If N is an injective R-module, then for each i ∈ Z there is an R-module isomorphism
Hi(HomR(M•, N)) ∼= HomR(H−i(M•), N).

exer020502 Exercise II.D.2.11. Let G be a finitely generated Z-module, and let H be a Z-module. Prove that
ExtiZ(G,H) = 0 for all i > 1.



CHAPTER II.E

Chain Maps and Induced Maps on Ext

chapter062921d
In this chapter we continue to build the technology needed to prove that Ext is well-defined and to

establish long exact sequences.

II.E.1. Chain Maps
section062921r

In this section we introduce chain maps and show in Proposition II.E.1.3 that these induce maps on
homology modules. We will use this fact heavily when we prove the existence of the mother of all long exact
sequences (Theorem II.F.1.2).

def110517c Definition II.E.1.1. Let M• and N• be R-complexes. A chain map from M• into N• is a sequence of
R-module homomorphisms

F• = {Fi : Mi −→ Ni | i ∈ Z}
such that the following diagram commutes.

M• =

F•

��

· · · // Mi

∂Mi //

Fi

��
�

Mi−1
//

Fi−1

��

· · ·

N• = · · · // Ni
∂Ni

// Ni−1
// · · ·

We denote such a sequence as

F• : M• // N•.

Chain maps are also known as commutative ladder diagrams. An isomorphism from M• to N• is a chain
map such that each Fi is an isomorphism.

ex110517d Example II.E.1.2. Consider the ring R = Z12 = Z/12Z and let M• and N• each be the constant
sequence of copies of R with the R-module homomorphisms defined below. Defining various multiplication
maps from Z12 to Z12 (vertically) we have a chain map from M• to N•.

M• = · · · 6· //

�

Z12
4· //

2·
��

�

Z12
6· //

3·
��

�

Z12
4· //

2·
��

�

· · ·

N• = · · ·
4·
// Z12

6·
// Z12

4·
// Z12

6·
// · · ·

InducedMapsOnHomology Proposition II.E.1.3. Let F• : M• // N• be a chain map.

InducedMapsOnHomology.a (a) Fi
(
Ker ∂Mi

)
⊆ Ker ∂Ni

InducedMapsOnHomology.b (b) Fi
(
Im ∂Mi+1

)
⊆ Im ∂Ni+1

InducedMapsOnHomology.c (c) Fi induces a well-defined R-module homomorphism from Hi(M•) to Hi(N•) given by

Hi(F•) : Hi(M•) // Hi(N•)

m
� // Fi(m)

m+ Im ∂Mi+1
� // Fi(m) + Im ∂Ni+1.

To put it yet another way

Hi(F•)(m) = Fi(m).

78
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Proof. (a) For any α ∈ ker(∂Mi ) we have

∂Ni (Fi(α)) = Fi−1(∂Mi (α)) = Fi−1(0) = 0

because F• is a chain map, completing this part.

(b) For any β ∈ Im ∂Mi+1 we can lift to some γ ∈Mi+1 such that ∂Mi+1(γ) = β. Then since F• is a chain map
we have

∂Ni+1(Fi(γ)) = Fi(∂
M
i+1(γ)) = Fi(β).

(c) This is a corollary. Part (a) ensures that Hi(F•) lands well, part (b) ensures that Hi(F•) preserves
equality, and the R-linearity of Fi gives the R-linearity of Hi(F•). �

rmk091618a Remark II.E.1.4. The construction of Hi(F•) is summarized in the following commutative diagram
with exact rows.

0 // Im ∂Mi+1

⊆ //

αi

��
�

Ker ∂Mi
//

βi

��
�

Hi(M•)

∴∃!Hi(F•)
��

// 0

0 // Im ∂Ni+1 ⊆
// Ker ∂Ni

// Hi(N•) // 0

Here αi and βi are each induced by Fi (by parts (b) and (a) of Proposition II.E.1.3, respectively).

ex110517f Example II.E.1.5. Recall F•, M•, and N• from Example II.E.1.2. We have the homology modules

H0(M•) =
Ker 6·
Im 4·

=
2 ·Z12

4 ·Z12

∼=
2Z

4Z
∼= Z2

H0(N•) =
Ker 4·
Im 6·

=
3 ·Z12

6 ·Z12

∼= Z2

and the following map induced by F0 = 3·.

H0(F•) : H0(M•) // H0(N•)

2Z12

4Z12

3· // 3Z12

6Z12

2n
� // 3 · 2n = 0

Note this implies H0(F•) is actually the zero map. The point is one might suspect this induced map to be
multiplication by 3 from Z2 into Z2, but it can’t be, because that would be an isomorphism and what we
have found clearly is not.

In a similar fashion, we can study the induced map H1(F•).

H1(F•) : H1(M•) // H1(N•)

3Z12

6Z12

2· // 2Z12

4Z12

3k � // 2 · 3k = 6k

Note this is an isomorphism since it sends 0 to 0 and sends 3 to 6 = 2. That is, it sends the generator of an
order-2 cyclic group to the generator of another order-2 cyclic group.

II.E.2. Liftings and Resolutions
section210623a

In this section we show that an R-module homomorphism can be extended to produce a chain map on
projective resolutions. Then we give some justification for Facts II.C.5.9 and II.C.5.11, as promised.

lem111017a Lemma II.E.2.1. Consider the following diagram of R-modules and R-module homomorphisms with ex-
act rows.

0 // M ′
α // P

γ // M //

f

��

0

0 // N ′
δ
// Q

σ
// N // 0
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If P is projective, then there exist R-module homomorphisms f ′ and F making the following diagram com-
mute.

0 // M ′
α //

f ′

��
�

P
γ //

F

��
�

M //

f

��

0

0 // N ′
δ
// Q

σ
// N // 0

Before proving this lemma, we give the following application.

prop111017b Proposition II.E.2.2. Let P+
• be an augmented projective resolution of M and let Q+

• be a “left reso-
lution of N”, i.e., an exact sequence

Q+
• = · · · // Q1

// Q0
// N // 0

where the modules Q0, Q1, . . . may not be projective. In this case, for every R-module homomorphism

f : M // N , there exists a commutative diagram

P+
• =

F+
•
��

· · · //

··· �

P1
//

F1

��
�

P0
//

F0

��
�

M //

f

��

0

Q+
• = · · · // Q1

// Q0
// N // 0.

Proof. We give a convincing diagram (II.E.2.2.1) and the general idea. (One may also want to revisit
the construction in Discussion II.B.1.2.) The maps F0 and f ′ come from Lemma II.E.2.1. Then the maps
F1 and f ′′ come from the same lemma, and so on, inductively. A diagram chase shows the larger rectangles
commute as well. �
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0

""

0
0

M
′′

<< ""

f
′′

��

M

==

=

  

f

��

··
·

∂
P 3

// P
2

<< ∂
P 2

//

F
2

��

P
1

∂
P 1

//

!!

F
1

��

P
0

τ
//

==

F
0

��

M
//

f

��

0

M
′′′

<<

f
′′
′

��

M
′

== !!

f
′

��

0

<<

0

<<

0

0

""

0
0

N
′′

<< !!

N

>>

=

  
··
·

∂
Q 3

// Q
2

== ∂
Q 2

// Q
1

!!∂
Q 1

// Q
0

>> π
// N

// 0

N
′′′

<<

N
′

== !!
0

;;

0

==

0

(II.E.2.2.1) eqn091018a
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We now prove Lemma II.E.2.1.

Proof of Lemma II.E.2.1. Since P is projective, Definition II.A.1.14(b) gives the existence of a func-
tion F such that the following diagram commutes.

�

P

∃F

��
f◦γ
��

Q
σ
// N // 0

This is precisely one of the functions we seek. We can also prove this using another characterization of
projective modules. Specifically HomR(P,−) is exact by Definition II.A.1.14(a) so applying it to the bottom
row of the diagram we get the following short exact sequence.

0 // HomR(P,N ′) // HomR(P,Q)
σ∗ // // HomR(P,N) // 0

Noting the surjectivity of σ∗, there exists an R-module homomorphism F ∈ HomR(P,Q) such that

σ∗(F ) = f ◦ γ ∈ HomR(P,N).

Since σ∗(F ) = σ ◦ F , this also yields the desired map.
Proving the existence of f ′ takes a bit more work. For any m′ ∈ M ′, the commutivity afforded by F

and the exactness of the rows give

σ(F (α(m′))) = f(γ(α(m′))) = f(0) = 0.

Therefore F (α(m′)) ∈ Kerσ = Im δ and there exists some n′ ∈ N ′ such that F (α(m′)) = δ(n′). In fact,
since δ is injective, this n′ is unique. Therefore we have the well-defined map

f ′ : M ′ // N ′

m′
� // n′

which we claim is an R-module homomorphism. To check R-linearity, first let m′ ∈M ′ and let r ∈ R. Then
there exists some n′ ∈ N ′ such that F (α(m′)) = δ(n′) and we consider rn′ ∈ N ′ to find

δ(rn′) = r · δ(n′) = r · F (α(m′)) = F (α(rm′)).

Therefore

f ′(rm′) = rn′ = r · f ′(m′).
We prove the additivity of f ′ in a similar fashion. Let m′1,m

′
2 ∈M ′ and there exist n′1, n

′
2 ∈ N ′ such that

F (α(m′1)) = δ(n′1) F (α(m′2)) = δ(n′2)

Therefore considering the element n′1 + n′2 ∈ N ′ we have

δ(n′1 + n′2) = δ(n′1) + δ(n′2) = F (α(m′1)) + F (α(m′2)) = F (α(m′1 +m′2))

and hence

f ′(m′1 +m′2) = n′1 + n′2 = f ′(m′1) + f ′(m′2).

�

Here we construct the induced maps on Ext from Fact II.C.5.9, but we will still put off some questions
of well-definedness.

disc110817d Discussion II.E.2.3. Consider R-module homomorphisms

f : M // M ′ g : N // N ′

and we want to derive, though by no means completely at this point, the following induced maps.

ExtiR(M,N)
ExtiR(M,g) // ExtiR(M,N ′)

ExtiR(M ′, N)
ExtiR(f,N) // ExtiR(M,N)
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The two maps we seek between Ext’s come from chain maps

HomR(P•, N)
HomR(P•,g) // HomR(P•, N

′)

HomR(P ′•, N)
HomR(F•,N) // HomR(P•, N)

where P• is a projective resolution of M , P ′• is a projective resolution of M ′, and F• : P• // P ′• is a “lift”

of f . That is, given the two augmented projective resolutions, because of the map f , there exist maps F0,
F1, and so on that make each of the successive diagrams commute.

P+
• = · · ·

···

∂P2 // P1

∂P1 //

∃F1

��

�

P0
τ //

∃F0

��

�

M //

f

��

0

(P ′•)
+ = · · ·

∂P
′

2

// P ′1
∂P
′

1

// P ′0
τ ′

// M ′ // 0

Therefore restricting down to the projective resolutions we have

P• = · · ·
∂P2 //

�···

P1

∂P1 //

F1

��

�

P0
//

F0

��

0

P ′• = · · ·
∂P
′

2

// P ′1
∂P
′

1

// P ′0 // 0.

We say F• = {F0, F1, F2, . . . } is a chain map compatible with f . Or to put it another way, F• is a chain
map such that

H0(P•)
H0(F•) //

∼=

��
�

H0(P ′•)

∼=
��

M
f

// M ′

using the induced map from Proposition II.E.1.3. We want to show that the ladder diagrams HomR(P•, g)
and HomR(F•, N) commute. First we consider HomR(P•, g).

HomR(P•, N) =

HomR(P•,g)

��

· · · // HomR(Pi, N)
HomR(∂Pi+1,N)

//

HomR(Pi,g)

��
�?

HomR(Pi+1, N) //

HomR(Pi+1,g)

��

· · ·

HomR(P•, N
′) = · · · // HomR(Pi, N

′)
HomR(∂Pi+1,N

′)

// HomR(Pi+1, N
′) // · · ·

To check commutivity we track an arbitrary φ ∈ HomR(Pi, N).

φ � HomR(∂Pi+1,N)
//

_

HomR(Pi,g)

��

φ ◦ ∂Pi+1 �
HomR(Pi+1,g)

))
g ◦ φ �

HomR(∂Pi+1,N
′)

// (g ◦ φ) ◦ ∂Pi+1
= g ◦ (φ ◦ ∂Pi+1)

Therefore the diagram commutes by the associativity of function composition and we define the first of our
two maps as

ExtiR(M, g) = H−i(HomR(P•, g))

where

ExtiR(M, g)
(
φ
)

= HomR(P•, g)−i(φ) = HomR(Pi, g)(φ) = g ◦ φ.
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The chain map HomR(F•, N) also arises from maps between the chain complexes used to define the
Ext’s of the domain and codomain.

HomR(F•, N) : HomR(P ′•, N) // HomR(P•, N)

As with the first map, there is a question of commutivity in a particular diagram we need answered in order
to verify we have a chain map.

HomR(P ′•, N) =

HomR(F•,N)

��

· · · // HomR(P ′i , N)
HomR(∂P

′
i+1,N)
//

HomR(Fi,N)

��
�?

HomR(P ′i+1, N) //

HomR(Fi+1,N)

��

· · ·

HomR(P•, N) = · · · // HomR(Pi, N)
HomR(∂Pi+1,N)

// HomR(Pi+1, N) // · · ·

We again ignore well-definedness and check commutivity.

ψ � HomR(∂P
′

i+1,N)
//

_

HomR(Fi,N)

��

ψ ◦ ∂P ′i+1 �
HomR(Fi+1,N)

))
ψ ◦ Fi �

HomR(∂Pi+1,N)

// (ψ ◦ Fi) ◦ ∂Pi+1
= (ψ ◦ ∂P ′i+1) ◦ Fi+1

Where the equality holds since F• is a chain map. Therefore we define the second map below.

ExtiR(f,N)(ψ) = HomR(F•, N)−i(ψ) = ψ ◦ Fi
In all reality, one also needs to show this construction is independent of choice of P•, P

′
•, and F•, but we

will end our discussion for now.

Here we give some justification for Fact II.C.5.11.

disc110917a Discussion II.E.2.4. Let r ∈ R, let L• be an R-complex, and define the map

µMr : M // M

m � // rm

where M is any R-module. Notice that we can build a chain map from L• to itself out of such R-module
homomorphisms.

L• = · · · // Li
∂Li //

µ
Li
r

��

�

Li−1
//

µ
Li−1
r

��

· · ·

L• = · · · // Li
∂Li

// Li−1
// · · ·

We confirm the commutivity of the diagram by tracking an arbitrary element ` ∈ Li.

` � //
_

��

∂Li (`)



$$
r` � // ∂Li (r`) = r · ∂Li (`)

Hence we say

(µL•r )• : L• // L•.

Furthermore, the map induced on homologies is also a multiplication map. That is

Hi((µ
L•
r )•) = µHi(L•)r

because of the following.

Hi((µ
L•
r )•)(`) = (µL•r )i(`) = r` = r · ` = µHi(L•)r

(
`
)



II.E.2. LIFTINGS AND RESOLUTIONS 85

We now claim

ExtiR(µMr , N) = µ
ExtiR(M,N)
r = ExtiR(M,µNr ).

Indeed the second equality in our claim follows from

ExtiR(M,µNr )(φ) = µNr ◦ φ =
‡
rφ = r · φ = µ

ExtiR(M,n)
r

(
φ
)

(II.E.2.4.1) eqn092818a

where ‡ holds since (µNr ◦ φ)(x) = r · φ(x) = (rφ)(x). For the first equality in our claim, we need F•.

P+
• =

(
µ
P

+
•
r

)
•

��

· · · //

··· �

P1
//

µP1
r

��

�

P0
//

µP0
r

��

�

M //

µMr

��

0

P+
• = · · · // P1

// P0
// M // 0

It is straightforward to show that this diagram commutes, i.e., it satisfies the conclusion of Proposi-
tion II.E.2.2. Thus, we have the following.

ExtiR(µMr , N)(ψ) = ψ ◦ µPir = r · ψ = r · ψ = µ
ExtiR(M,N)
r

ex111217a Example II.E.2.5. Let R = Z12 and define R-modules M = Z6 and N = Z3. We then have the
following chain map F•, where τ , π, and ρ are all natural surjections.

P+
• = · · · 2· //

··· �

Z12
6· //

2·F3

��

�

Z12
2· //

1·F2

��

�

Z12
6· //

2·F1

��

�

Z12
τ //

1·F0

��

�

Z6
//

ρ

��

0

Q+
• = · · · 4· // Z12

3· // Z12
4· // Z12

3· // Z12
π // Z3

// 0

Reducing from the augmented resolutions, we lose our exactness on the right side, but we still have a chain
map.

P• =

F•

��

· · · 2· //

··· �

Z12
6· //

2·F3

��

�

Z12
2· //

1·F2

��

�

Z12
6· //

2·F1

��

�

Z12
//

1·F0

��

0

Q• = · · · 4· // Z12
3· // Z12

4· // Z12
3· // Z12

// 0

We want to compute maps on Ext induced by ρ. Specifically, we want to compute the maps

ExtiZ12
(ρ,Z12) : ExtiZ12

(Z3,Z12) //

‖ ‖

ExtiZ12
(Z6,Z12)

‖

H−i(HomZ12
(F•,Z12)) H−i(HomZ12

(Q•,Z12)) H−i(HomZ12
(P•,Z12)).

From Discussion II.E.2.3, we know exactly how this map behaves for any given index i.

H−i(HomZ12
(F•,Z12))(φ) = φ ◦ Fi

In order to understand this better, we apply the functor HomZ12
(−,Z12) to the chain map above.

P ∗• = 0 // HomZ12
(Z12,Z12)

6· // HomZ12
(Z12,Z12)

2· // HomZ12
(Z12,Z12)

6· // · · ·

Q∗• = 0 // HomZ12
(Z12,Z12)

3·
//

1·

OO

HomZ12
(Z12,Z12)

4·
//

2·

OO

HomZ12
(Z12,Z12)

3·
//

1·

OO

· · ·
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Note we still have multiplication maps (see our justification for ‡ in Equation (II.E.2.4.1)). By Hom-
cancellation we have the following.

P ∗•
∼= 0 // Z12

6· // Z12
2· // Z12

6· // · · ·

Q∗•
∼= 0 // Z12

3·
//

1·

OO

Z12
4·
//

2·

OO

Z12
3·
//

1·

OO

· · ·

Noticing this ladder diagram is merely the second diagram in this example with the arrows reversed, we
know there is only one place where the rows are not exact, namely at the 0th index. Therefore the Exti’s
vanish for all i > 0. So we write

ExtiZ12
(Z6,Z12) = 0 = ExtiZ12

(Z3,Z12)

for all i > 0 and hence

ExtiZ12
(ρ,Z12) : 0 // 0

is the zero map. At the i = 0 position we have

Ext0
R(Z6,Z12) ∼= Ker Z12

6· // Z12
∼=
〈
2
〉

Ext0
R(Z3,Z12) ∼= Ker Z12

3· // Z12
∼=
〈
4
〉

Therefore the map induced by ρ =

(
Z6

1· // Z6

)
,

Ext0
R(ρ,Z12) : Ext0

R(Z3,Z12) // Ext0
R(Z6,Z12)

is just the inclusion map
〈
4
〉 � � ⊆ //

〈
2
〉

.

ex112017a Example II.E.2.6. Next, we generalize the previous example by computing ExtiZ12
(ρ,Zn) for several n

satisfying n|12.
First we handle the n = 2 and n = 4 cases. Since 2 · Z2 = 0 and 3 · Z3 = 0, by Discussion II.E.2.4 we

know

2 · ExtiZ12
(Z3,Z2) = 0 = 3 · ExtiZ12

(Z3,Z2)

and therefore

1 · ExtiZ12
(Z3,Z2) = (3− 2) · ExtiZ12

(Z3,Z2) = 0.

Thus ExtiZ12
(Z3,Z2) = 0 for all i ∈ Z and for almost identical reasons ExtiZ12

(Z3,Z4) = 0 for all i ∈ Z as
well, so we need not endeavor any further to study the induced maps on homologies in these cases (maps
between zeros are boring).

For the case when n = 6, much of the derivation is a replication of Example II.E.2.5, so we will not
reproduce it here, but the resulting ladder diagram is below.

P ∗•
∼= 0 // Z6

6· // Z6
2· // Z6

6· // · · ·

Q∗•
∼= 0 // Z6

3·
//

1·

OO

Z6
4·
//

2·

OO

Z6
3·
//

1·

OO

· · ·

At the i = 0 position we have the following homology modules.

H0(P ∗• ) =
Ker Z6

0· // Z6

Im 0 // Z6

=
Z6

0
∼= Z6

H0(Q∗•) =
Ker Z6

3· // Z6

Im 0 // Z6

∼=
2 ·Z6

0
∼= 2 ·Z6



EXERCISES 87

Therefore the multiplication map 1· is essentially a containment map.

H0(F•) : H0(Q∗•)
1· // H0(P ∗• )

2 ·Z6
1·
⊆

// Z6

That is, it is injective, and is neither onto nor the zero map. On the other hand, at the i = −1 position we
have

H−1(P ∗• ) = Ext1
Z12

(Z6,Z6) =
Ker Z6

2· // Z6

Im Z6
0· // Z6

=
3 ·Z6

0
∼= 3Z6

and

H−1(Q∗•) = Ext1
Z12

(Z3,Z6) =

Ker Z6
4·

=−2·
// Z6

Im Z6
3· // Z6

∼=
3 ·Z6

3 ·Z6
= 0.

Therefore the induced map is the zero map and by the periodicity of our diagram, the same will hold for all
odd i. Similarly

H−2(Q∗•) = Ext2
Z12

(Z3,Z6) =
Ker Z6

3· // Z6

Im Z6
4·

=−2·
// Z6

=
2 ·Z6

2 ·Z6
= 0

so the periodicity of our ladder diagram lets us conclude ExtiZ12
(ρ,Z6) = 0 for all i > 0.

Exercises

exer040102 Exercise II.E.2.7. Let R be a commutative ring with identity, and let M ′•,M
′′
• be R-complexes.

DefineM ′•⊕M ′′• := (M ′ ⊕M ′′)• where for each i ∈ Z we have (M ′⊕M ′′)i = M ′i⊕M ′′i and ∂M
′⊕M ′′

i

(
m′i
m′′i

)
=(

∂M
′
(m′i)

∂M
′′

(m′′i )

)
. In other words, the map ∂M

′⊕M ′′
i is represented by the diagonal matrix

(
∂M
′

0

0 ∂M
′′

)
. For each

i ∈ Z, let εi : M
′
i → M ′i ⊕M ′′i be the natural inclusion εi(m

′
i) =

(
m′i
0

)
, and let pi : M

′
i ⊕M ′′i → M ′′i be the

natural surjection pi

(
m′i
m′′i

)
= m′′i . Note that each map ∂M

′⊕M ′′
i , εi, and pi is an R-module homomorphism,

and each sequence 0→M ′i
εi−→M ′i ⊕M ′′i

pi−→M ′′i → 0 is exact. (You do not need to prove this.)

(a) Prove that M ′• ⊕M ′′• is an R-complex.
(b) For each i ∈ Z, prove that Hi(M

′
• ⊕M ′′•) ∼= Hi(M

′
•)⊕Hi(M

′′
•).

exer040102c (c) Prove that ε• : M ′• →M ′• ⊕M ′′• and p• : M ′• ⊕M ′′• →M ′′• are chain maps. (It follows immediately
that the sequence

0→M ′•
ε•−→M ′• ⊕M ′′•

p•−→M ′′• → 0 (II.E.2.7.1) eq171116a

is exact; you do not need to prove this.)
exer040102d (d) For each i ∈ Z, prove that the sequence

0→ Hi(M
′
•)

Hi(ε•)−−−−→ Hi(M
′
• ⊕M ′′•)

Hi(p•)−−−−→ Hi(M
′′
•)→ 0

is split exact.
exer040102e (e) For each i ∈ Z, let ði : Hi(M

′′
•) → Hi−i(M

′
•) be the connecting homomorphism for the long exact

sequence coming from (II.E.2.7.1). Use part (d) to prove that ði = 0.
(f) Use the definition/construction of ði to give another proof of the fact that ði = 0.

exer040101 Exercise II.E.2.8. (Functoriality of long exact sequences) Let R be a commutative ring with identity,
and consider the following diagram of chain maps:

0 // M ′•
F• //

f•

��

M•
G• //

g•

��

M ′′• //

h•

��

0

0 // N ′•
H• // N•

K• // N ′′• // 0.
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Assume that, for each integer i, the following diagram commutes:

0 // M ′i
Fi //

fi

��

Mi
Gi //

gi

��

M ′′i
//

hi

��

0

0 // N ′i
Hi // Ni

Ki // N ′′i // 0.

Prove that the following diagram of long exact sequences commutes:

· · ·
ðMi+1 // Hi(M

′
•)

Hi(F•)//

Hi(f•)

��

Hi(M•)
Hi(G•)//

Hi(g•)

��

Hi(M
′′
• )

ðMi //

Hi(h•)

��

Hi−1(M ′•)
Hi−1(F•) //

Hi−1(f•)

��

· · ·

· · ·
ðNi+1 // Hi(N

′
•)

Hi(H•)// Hi(N•)
Hi(K•)// Hi(N

′′
• )

ðNi // Hi−1(N ′•)
Hi−1(H•) // · · · .



CHAPTER II.F

Long Exact Sequences

chapter062021b
In this chapter we achieve the goal set in Section II.B.1 by proving the existence of long exact sequences

for Ext and the well-definedness of Ext (see Theorems II.F.2.1, II.F.3.3, and II.F.5.2).

II.F.1. The Mother of All Long Exact Sequences
section062921s

In this section we prove the existence of long exact sequences in general and we prove the Snake Lemma
as a corollary, which we will need for future results, such as Lemmas II.F.3.1 and II.F.3.2.

def092818b Definition II.F.1.1. Let M•, M
′
•, and M ′′• be R-complexes. A diagram of chain maps

0 // M ′•
f• // M•

g• // M ′′• // 0

is a short exact sequence of R-complexes if each row in the ladder is exact.

...

∂M
′

i+1

��

...

∂Mi+1

��

...

∂M
′′

i+1

��
0 // M ′i

fi //

∂M
′

i

��
�

Mi
gi //

∂Mi

��

�

M ′′i
//

∂M
′′

i

��

0

0 // M ′i−1 fi−1

//

∂M
′

i−1

��

Mi−1 gi−1

//

∂Mi−1

��

M ′′i−1
//

∂M
′′

i−1

��

0

...
...

...

mother Theorem II.F.1.2. Consider the following short exact sequence of R-complexes.

0 // M ′•
f• // M•

g• // M ′′• // 0

Then for every i ∈ Z there exists an R-module homomorphism

ði : Hi(M
′′
• ) // Hi−1(M ′•)

m′′i
� // m′i−1

such that the following sequence is exact.

· · ·
ði+1 // Hi(M

′
•)

Hi(f•) // Hi(M•)
Hi(g•)// Hi(M

′′
• )

ði // Hi−1(M ′•)
Hi−1(f•) // · · ·

We call ði a connecting homomorphism.

Proof. We will prove this in nine steps.

89
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Step 1: Let us construct ði. Let ξ ∈ Hi(M
′′
• ) = Ker ∂M

′′

i / Im ∂M
′′

i+1 and let α ∈ Ker ∂M
′′

i such that
ξ = α ∈ Hi(M

′′
• ). Since gi is surjective, let β ∈ Mi such that gi(β) = α. Since g• is a chain map (i.e., since

the partials and gi’s commute) and by definition of β we have

gi−1

(
∂Mi (β)

)
= ∂M

′′

i (gi(β)) = ∂M
′′

i (α) = 0.

Therefore ∂Mi (β) ∈ ker(gi−1) = Im fi−1, so we let γ ∈ M ′i−1 such that fi−1(γ) = ∂Mi (β). We define ði in
terms of this element γ.

ði(ξ) = γ ∈
Ker ∂M

′

i−1

Im ∂M
′

i

= Hi−1(M ′•)

We need to show γ ∈ Ker ∂M
′

i−1, which we will do first in the next step.

Step 2: We show ði is well-defined. First we have

fi−2

(
∂M

′

i−1(γ)
)

= ∂Mi−1 (fi−1(γ))

since F• is a chain map. Then
∂Mi−1 (fi−1(γ)) = ∂Mi−1

(
∂Mi (β)

)
= 0

using the definition of γ and that M• is an R-complex. Since fi−2 is injective, this implies ∂M
′

i−1(γ) = 0, i.e.,

γ ∈ Ker ∂M
′

i−1, as desired.

Second we will show γ ∈ Hi−1(M ′•) is independent of any choices made in Step 1. Let α, α′ ∈ Ker ∂M
′′

i

such that α = ξ = α′, let β, β′ ∈ Mi such that gi(β) = α and gi(β
′) = α′, and let γ, γ′ ∈ M ′i−1 such that

fi−1(γ) = ∂Mi (β) and fi−1(γ′) = ∂Mi (β′). We need to show γ = γ′ in Hi−1(M ′•) = Ker ∂M
′

i−1/ Im ∂M
′

i , or in

other words, we need to show γ − γ′ ∈ Im ∂M
′

i .

By assumption α = α′ ∈ Hi(M
′
•) = Ker ∂M

′

i / Im ∂M
′

i+1, so α − α′ ∈ Im ∂M
′

i+1 and we let η ∈ M ′′i+1 such

that ∂M
′′

i+1 (η) = α− α′. Since gi+1 is surjective, we may let ν ∈Mi+1 such that gi+1(ν) = η and we compute
the following.

gi(β − β′ − ∂Mi+1(ν)) = gi(β)− gi(β′)− (gi ◦ ∂Mi+1)(ν) = α− α′ − (α− α′) = 0

In the above calculation we rely only on the definitions of our elements and the linearity of gi. By this
calculation we know β − β′ − ∂Mi+1(ν) ∈ ker(gi) = Im fi so let ω ∈ M ′i such that fi(ω) = β − β′ − ∂Mi+1(ν).

Since γ, γ′, ∂M
′

i (ω) ∈M ′i−1, we use the linearity of fi−1 to get

fi−1

(
∂M

′

i (ω)− (γ − γ′)
)

=
(
fi−1 ◦ ∂M

′

i

)
(ω)− fi−1(γ) + fi−1(γ′).

Since f• is a chain map, then(
fi−1 ◦ ∂M

′

i

)
(ω)− fi−1(γ) + fi−1(γ′) =

(
∂Mi ◦ fi

)
(ω)− ∂Mi (β) + ∂Mi (β′).

The definition of ω gives a similar argument as for fi−2 above.(
∂Mi ◦ fi

)
(ω)− ∂Mi (β) + ∂Mi (β′) = ∂Mi

(
β − β′ − ∂Mi+1(ν)

)
− ∂Mi (β) + ∂Mi (β′)

= ∂Mi
(
β − β′ − ∂Mi+1(ν)− β + β′

)
= −

(
∂Mi ◦ ∂Mi+1

)
(ν)

= 0.

Since fi−1 is injective, this implies ∂M
′

i (ω)− (γ − γ′) = 0 or equivalently

γ − γ′ = ∂M
′

i (ω) ∈ Im ∂M
′

i

completing this step.

Step 3: Here we prove ði is an R-module homomorphism. Let ξ, ξ′ ∈ Hi(M
′′
• ) and r ∈ R. Also let

α, α′ ∈ Ker ∂M
′′

i such that α = ξ and α′ = ξ′, let β, β′ ∈ Mi such that gi(β) = α and gi(β
′) = α′, and let

γ, γ′ ∈M ′i−1 such that fi−1(γ) = ∂Mi (β) and fi−1(γ′) = ∂Mi (β′).

Notice that rα + α′ ∈ Ker ∂M
′′

i and hence it makes sense to write rα+ α′ = rξ + ξ′. Notice also that
rβ + β′ ∈Mi so we have

gi(rβ + β′) = gi(rβ) + gi(β
′) = r · gi(β) + gi(β

′) = rα+ α′.
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Finally note that rγ + γ′ ∈M ′i−1 for which we have

fi−1(rγ + γ′) = fi−1(rγ) + fi−1(γ′) = r · fi−1(γ) + fi−1(γ′)

= r · ∂Mi (β) + ∂Mi (β′) = ∂Mi (rβ) + ∂Mi (β′) = ∂Mi (rβ + β′).

Therefore we have an element satisfying the definition of ði described in Step 1 so we conclude this step in
the following display.

ði(rξ + ξ′) = rγ + γ′ = r · γ + γ = r · ði(ξ) + ði(ξ)

Step 4: We tackle the first of several questions of exactness. Here we show ImHi(f•) ⊆ KerHi(g•). Let

δ ∈ Hi(M
′
•) and let ρ ∈ Ker ∂M

′

i such that ρ = δ. Therefore we have

Hi(g•) (Hi(f•)(δ)) = Hi(g•)
(
fi(ρ)

)
= (gi ◦ fi)(ρ) = 0 = 0

where the third equality comes from the exactness of the original sequence of chain maps.

Step 5: We now show ImHi(f•) ⊇ KerHi(g•). Let δ ∈ KerHi(g•) and let ρ ∈ Ker ∂Mi such that ρ = δ.
This gives

0 = Hi(g•)(ρ) = gi(ρ) ∈ Hi(M
′′
• ) =

Ker ∂M
′′

i

Im ∂M
′′

i+1

.

Therefore gi(ρ) ∈ Im ∂M
′′

i+1 so we lift to some µ ∈ M ′′i+1 such that ∂M
′′

i+1 (µ) = gi(ρ) and lift again to some

σ ∈ Mi+1 such that gi+1(σ) = µ (since gi+1 is surjective). Since ρ, ∂Mi+1(σ) ∈ Mi, we consider the element

ρ− ∂Mi+1(σ) ∈Mi. Using linearity and the fact that g• is a chain map we compute

gi(ρ− ∂Mi+1(σ)) = gi(ρ)− (gi ◦ ∂Mi+1)(σ) = gi(ρ)− (∂M
′′

i+1 ◦ gi+1)(σ) = gi(ρ)− ∂M
′′

i+1 (µ) = 0.

Hence ρ−∂Mi+1(σ) ∈ ker(gi) = Im fi and we let τ ∈M ′i such that fi(τ) = ρ−∂Mi+1(σ). We claim τ ∈ Ker ∂M
′

i

and point out it suffices to show
(
fi−1 ◦ ∂M

′

i

)
(τ) = 0 since fi−1 is injective. We compute(

fi−1 ◦ ∂M
′

i

)
(τ) = ∂Mi (fi(τ)) = ∂Mi (ρ− ∂Mi+1(σ)) = ∂Mi (ρ)−

(
∂Mi ◦ ∂Mi+1

)
(σ) = 0

where the last equality holds by definition of ρ and because M• is a chain complex.

We consider ρ, ∂Mi+1(σ) ∈ Ker ∂Mi and τ ∈ Ker ∂M
′

i , which represent the cosets ρ, ∂Mi+1(σ)
∈ Hi(M•) and τ ∈ Hi(M

′
•). Therefore it makes sense to compute

Hi(f•)(τ) = fi(τ) = ρ− ∂Mi+1(σ) = ρ− ∂Mi+1(σ) = ρ− 0 = ρ = δ.

Hence δ ∈ ImHi(f•), completing this step.

Step 6: Continuing our proof of exactness, we show here that ImHi(g•) ⊆ Kerði. Let ζ ∈ Hi(M•) and let
β ∈ Ker ∂Mi such that β = ζ. We want to show that (ði ◦Hi(g•)) (β) = 0. Define α = gi(β) and we have

Hi(g•)(β) = gi(β) = α.

Computing ði(Hi(g•)(β)) = ði(α) requires some γ ∈ Ker ∂M
′

i−1 such that fi−1(γ) = ∂Mi (β). Since β ∈ Ker ∂Mi
by assumption, ∂Mi (β) = 0 = fi−1(0), so setting γ = 0 we get

ði(α) = γ = 0 = 0.

Step 7: We now show ImHi(g•) ⊇ Kerði. Let ξ ∈ Kerði ⊆ Hi(M
′′
• ) and let α ∈ Ker ∂M

′′

i such that ξ = α.
Fix some β ∈Mi such that gi(β) = α and some γ ∈M ′i−1 such that fi−1(γ) = ∂Mi (β) ∈ ker(gi−1) = Im fi−1.
Our construction in Step 1 implies ði(ξ) = γ so we have

0 = ði(ξ) = γ ∈ Hi−1(M ′•) =
Ker ∂M

′

i−1

Im ∂M
′

i

.



II.F.1. THE MOTHER OF ALL LONG EXACT SEQUENCES 92

Hence γ ∈ Im ∂M
′

i and we let ω ∈ M ′i such that ∂M
′

i (ω) = γ. Moreover, fi(ω), β ∈ Mi so we compute the
following.

∂Mi (β − fi(ω)) = ∂Mi (β)−
(
∂Mi ◦ fi

)
(ω)

= ∂Mi (β)−
(
fi−1 ◦ ∂M

′

i

)
(ω)

= ∂Mi (β)− fi−1(γ)

= ∂Mi (β)− ∂Mi (β)

= 0

Therefore β − fi(ω) ∈ Ker ∂Mi and hence β − fi(ω) ∈ Hi(M•). We may also compute

Hi(g•)(β − fi(ω)) = gi(β − fi(ω)) = gi(β)− (gi ◦ fi)(ω) = gi(β) = α = ξ

where the third equality holds by the exactness of the ith row of the given diagram. Hence ξ ∈ ImHi(g•),
which completes this step.

Step 8: Here we show Imði ⊆ KerHi−1(f•). Let ξ ∈ Hi(M
′′
• ) and let α ∈ Ker ∂M

′′

i such that ξ = α. We
want to show that Hi−1(f•) (ði(α)) = 0. Since gi is surjective, let β ∈ Mi such that gi(β) = α and since
∂Mi (β) ∈ Ker gi−1 = Im fi−1, let γ ∈M ′i−1 such that fi−1(γ) = ∂Mi (β). We therefore have

Hi−1(f•)(ði(α)) = Hi−1(f•)(γ) = fi−1(γ) = ∂Mi (β) = 0

which completes this step.

Step 9: We finally show that Im ði ⊇ KerHi−1(f•). Let λ ∈ KerHi−1(f•) and fix some element γ ∈ Ker ∂M
′

i−1

such that λ = γ ∈ Hi−1(M ′•). By assumption we have

0 = Hi−1(f•)(λ) = Hi−1(f•)(γ) = fi−1(γ) ∈ Hi−1(M•) =
Ker ∂Mi−1

Im ∂Mi
.

It follows that fi−1(γ) ∈ Im ∂Mi , so we may let β ∈ Mi such that ∂Mi (β) = fi−1(γ). Denote gi(β) = α and
notice by our construction in Step 1, this element is a good candidate on which to apply ði. Observe that

∂M
′′

i (α) = ∂M
′′

i (gi(β)) = gi−1(∂Mi (β)) = (gi−1 ◦ fi−1)(γ) = 0

so α ∈ Ker ∂M
′′

i . Therefore α ∈ Hi(M
′′
• ) and

ði(α) = γ = λ.

This completes the proof of the theorem. �

SnakeLemma Corollary II.F.1.3 (Snake Lemma). Consider a commutative diagram of R-modules and R-module
homomorphisms with exact rows.

0 // M ′1
f1 //

∂′1
��

M1
g1 //

∂1

��

M ′′1 //

∂′′1
��

0

0 // M ′0
f1 // M0

g1 // M ′′0 // 0

There exists an exact sequence

0 // ker(∂′1) // ker(∂1) // ker(∂′′1 )

// Coker (∂′1) // Coker (∂1) // Coker (∂′′1 ) // 0.
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Proof. From the given diagram, we extend to form the following short exact sequence of R-complexes.

0 // M ′• // M• // M ′′• // 0

...

��

...

��

...

��
0

ε′1
��

0

ε1

��

0

ε′′1
��

0 // M ′1
f1 //

∂′1
��

M1
g1 //

∂1

��

M ′′1 //

∂′′1
��

0

0 // M ′0
f0 //

τ ′1
��

M0
g0 //

τ1

��

M ′′0 //

τ ′′1
��

0

0

��

0

��

0

��
...

...
...

Note that the columns in this diagram are R-complexes, because

Im ε′1 = {0} ⊆ Ker ∂′1

Im ∂′1 ⊆M ′0 = Ker τ ′1

and similarly for the other two columns. By Theorem II.F.1.2, we have the following long exact sequence.

· · · // H2(M ′′• )

// H1(M ′•) // H1(M•) // H1(M ′′• )

// H0(M ′•) // H0(M•) // H0(M ′′• )

// H−1(M ′•) // · · ·

By construction

Hi(M
′
•) = Hi(M•) = Hi(M

′′
• ) = 0

for all i > 1 and all i < 0. Checking definitions of the remaining six homology modules verifies the claim. �

SnakeCor Remark II.F.1.4. In the context of Corollary II.F.1.3, we know for each i = 0, 1, 2, ∂
(i)
1 is injective if and

only if ker
(
∂

(i)
1

)
= 0. For a consequence of this, suppose ∂′′1 is injective. Then in our long exact sequence

we have

0 // Ker ∂′1 // Ker ∂1
// Ker ∂′′1 = 0

and from Fact II.C.2.24, it follows that Ker ∂′1 = 0 if and only if Ker ∂1 = 0, i.e., ∂′1 is injective if and only
if ∂1 is injective. In a similar fashion, if we suppose that ∂′1 is surjective (i.e., Coker (∂′1) = 0), then ∂1 is
surjective if and only if ∂′′1 is surjective. The proof of this is analogous using the latter half of the long exact
sequence in Corollary II.F.1.3.
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II.F.2. The First Long Exact Sequence in Ext
section062021a

In this section we use Theorem II.F.1.2 to establish the first of two long exact sequences of Ext modules
associated to a given short exact sequence of R-modules. We also motivate another long exact sequence in
Discussion II.F.2.2.

thm112617c Theorem II.F.2.1. Let L be an R-module and let

0 // N ′
α // N

β // N ′′ // 0

be a short exact sequence of R-modules. There exists the following long exact sequence associated to ExtiR(L,−).

0 // HomR(L,N ′) // HomR(L,N) // HomR(L,N ′′)

// Ext1
R(L,N ′) // Ext1

R(L,N) // Ext1
R(L,N ′′)

// · · · · · · // Exti−1
R (L,N ′′)

// ExtiR(L,N ′) // ExtiR(L,N) // ExtiR(L,N ′′)

// Exti+1
R (L,N ′) // · · ·

Proof. Let P• be a projective resolution for L. We claim that the R-complexes HomR(P•, N
′),

HomR(P•, N), and HomR(P•, N
′′) form a short exact sequence of complexes, to which we may apply Theo-

rem II.F.1.2 to achieve the desired result. See the diagram on the following page.
Since Pi is projective for all i, HomR(Pi,−) is exact for all i and therefore the rows are all exact.

Furthermore the diagrams commute by the associativity of function composition. Hence we have a short
exact sequence of R-complexes and the associated long exact sequence has the desired shape, since

H−i(HomR(P•, N
(j))) = ExtiR(L,N (j))

for all i and j = 0, 1, 2.
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0 // HomR(P•, N
′)

HomR(P•,α)// HomR(P•, N)
HomR(P•,β)// HomR(P•, N

′′) // 0

0

��

0

��

0

��
0 // HomR(P0, N

′)
HomR(P0,α)

α∗
//

HomR(∂P1 ,N
′) (∂P1 )

∗

��

HomR(P0, N)
HomR(P0,β)

β∗

//

HomR(∂P1 ,N) (∂P1 )
∗

��

HomR(P0, N
′′) //

HomR(∂P1 ,N
′′) (∂P1 )

∗

��

0

0 // HomR(P1, N
′)

HomR(P1,α)//

��

HomR(P1, N)
HomR(P1,β)//

��

HomR(P1, N
′′) //

��

0

...

��

...

��

...

��
0 // HomR(Pi, N

′) //

��

HomR(Pi, N) //

��

HomR(Pi, N
′′) //

��

0

...
...

...

�

disc112817a Discussion II.F.2.2. Here we describe how one might obtain the other long exact sequence from The-
orem II.B.1.1, namely

0 // HomR(N ′′, L) // HomR(N,L) // HomR(N ′, L)

// ExtiR(N ′′, L) //

‖

ExtiR(N,L) //

‖

ExtiR(N ′, L) //

‖

· · ·

H−i(HomR(Q′′• , L)) H−i(HomR(Q•, L)) H−i(HomR(Q′•, L))

where Q′′• , Q•, and Q′• are projective resolutions of N ′′, N , and N ′, respectively. For this we would need a
short exact sequence

0 // HomR(Q′′• , L) // HomR(Q•, L) // HomR(Q′•, L) // 0

which requires a short exact sequence

0 // Q′• // Q• // Q′′• // 0 (†) eqn050818a

such that HomR(†, L) is exact. Note that if there exists a short exact sequence (†), then it actually follows
that HomR(†, L) is exact by the following. Consider an arbitrary row of (†).

0 // Q′i // Qi // Q′′i // 0 (‡) eqn050818b

Since Q′′i is projective, the sequence (‡) splits, so HomR(‡, L) is split exact (and therefore exact). So given

a short exact sequence 0 // N ′
α // N

β // N ′′ // 0 , we want to construct a short exact sequence
of projective resolutions as in (†). The good news is we already have a means of lifting α and β to chain

maps Q′•
A // Q• and Q•

B // Q′′• , respectively. However, the resulting short sequence is not exact in

general. We let this serve as motivation for the horseshoe lemma in the next section.
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II.F.3. The Horseshoe Lemma and Second Long Exact Sequence in Ext
section062921t

In this section we prove the Horseshoe Lemma (Lemma II.F.3.2) and use it to prove the existence of the
long exact sequence described in Discussion II.F.2.2.

lem112817b Lemma II.F.3.1. Consider a short exact sequence of R-modules and R-module homomorphisms.

0 // M ′
f // M

g // M ′′ // 0

Let τ ′ : P ′ →M ′ and τ ′′ : P ′′ →M ′′ be surjections where P ′ and P ′′ are projective. There is a commutative
diagram with exact rows and columns

0 // P ′
ε //

τ ′

��

P ′ ⊕ P ′′ π //

τ

��

P ′′ //

τ ′′

��

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

(II.F.3.1.1) eqn112618a

where ε and π are the natural injection and surjection, respectively.

Proof. Use the fact that P ′′ is projective (see Definition II.A.1.14) to find an R-module homomorphism
h : P ′′ →M making the following diagram commute.

P ′′

h

}}
τ ′′

��
M

g // M ′′ // 0

Define τ : P ′ ⊕ P ′′ →M by the formula

τ(p′, p′′) = f(τ ′(p′)) + h(p′′).

The map τ is well defined by construction. Let α, β ∈ P ′, ξ, ζ ∈ P ′′, and r ∈ R. We check that τ is an
R-module homomorphism below.

τ(r(α, ξ) + (β, ζ)) = τ(rα+ β , rξ + ζ)

= f(τ ′(rα+ β)) + h(rξ + ζ)

= f(r · τ ′(α) + τ ′(β)) + r · h(ξ) + h(ζ)

= r · f(τ ′(α)) + f(τ ′(β)) + r · h(ξ) + h(ζ)

= r · [f(τ ′(α)) + h(ξ)] + [f(τ ′(β)) + h(ζ)]

= r · τ(α, ξ) + τ(β, ζ)

We also show τ makes (II.F.3.1.1) commute. For any p′ ∈ P ′ we have

τ(ε(p′)) = τ(p′, 0) = f(τ ′(p′))

so the square on the left side commutes. For any (p′, p′′) ∈ P ′ ⊕ P ′′ we have

τ ′′(π(p′, p′′)) = τ ′′(p′′)

g[τ(p′, p′′)] = g[f(τ ′(p′)) + h(p′′)] = (g ◦ f)(τ ′(p′)) + g[h(p′′)] = 0 + g(h(p′′))

where the zero in the last step comes from the exactness of the given short exact sequence. The two results
are equal by definition of the map h. Therefore the square on the right in (II.F.3.1.1) commutes.

Since τ ′ and τ ′′ are each surjective the left and right columns of (II.F.3.1.1) are exact. Moreover, the
Snake Lemma (see Remark II.F.1.4) shows that τ must be surjective as well and the center column is exact,
completing the proof. �

lem112817c Lemma II.F.3.2 (Horseshoe Lemma). Consider the short exact sequence of R-modules and R-module
homomorphisms.

0 // M ′
f // M

g // M ′′ // 0
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Let P ′• and P ′′• be projective resolutions of M ′ and M ′′, respectively. There is a commutative diagram with
exact rows

...

∂P
′

2

��

...

∂P2

��

...

∂P
′′

2

��
0 // P ′1

F1 //

∂P
′

1

��

P1
G1 //

∂P1
��

P ′′1 //

∂P
′′

1

��

0

0 // P ′0
F0 //

τ ′

��

P0
G0 //

τ

��

P ′′0 //

τ ′′

��

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

such that the middle column is an augmented projective resolution of M .

Proof. Note that each row of the diagram, aside from the bottom row, will be split since each P ′′i is
projective for all i ∈ N. Using Lemma II.F.3.1 we construct a commutative diagram with exact rows and
columns

0 // P ′0

τ ′

��

F0 // P ′0 ⊕ P ′′0
τ

��

G0 // P ′′0

τ ′′

��

// 0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

where F0 and G0 are the natural injection and surjection (ε and π from the lemma), respectively. Consider
the commutative diagram

0

��

0

��

0

��
0 // ker(τ ′)

f1 //

⊆
��

ker(τ)
g1 //

⊆
��

ker(τ ′′) //

⊆
��

0

0 // P ′0
F0 //

τ ′

��

P0
G0 //

τ

��

P ′′0 //

τ ′′

��

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

(II.F.3.2.1) eqn112618b

where f1 and g1 are induced by f and g, respectively, and P0 = P ′0 ⊕ P ′′0 . The columns are exact by
construction and the top row is exact by the Snake Lemma (II.F.1.3), because the cokernel of a surjection
is zero. Hence we have exactness everywhere.

For ease of notation, let M ′1 = ker(τ ′), M1 = ker(τ), and M ′′1 = ker(τ ′′). We may apply Lemma II.F.3.1
again to build another commutative diagram with exact rows and columns, defining M ′2, M2, and M ′′2
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similarly.

0

��

0

��

0

��
0 // M ′2

f2 //

⊆
��

M2
g2 //

⊆
��

M ′′2 //

⊆
��

0

0 // P ′1
F1 //

τ ′1
��

P1
G1 //

τ1

��

P ′′1 //

τ ′′1
��

0

0 // M ′1
f1 //

��

M1
g1 //

��

M ′′1 //

��

0

0 0 0

(II.F.3.2.2) eqn112618c

Splicing (II.F.3.2.1) and (II.F.3.2.2) together, we obtain a slightly larger diagram with rows and columns
still exact.

0

��

0

��

0

��
0 // M ′2

f2 //

⊆
��

M2
g2 //

⊆
��

M ′′2 //

⊆
��

0

0 // P ′1
F1 //

τ ′1
��

P1
G1 //

τ1

��

P ′′1 //

τ ′′1
��

0

0 // P ′0
F0 //

τ ′

��

P0
G0 //

τ

��

P ′′0 //

τ ′′

��

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

We have cheated a bit by using the names τ ′1, τ1, and τ ′′1 , but note that there are copies of M ′1, M1, and M ′′1
sitting inside of P ′0, P0, and P ′′0 , respectively. We may repeat this construction inductively to achieve the
desired diagram. �

With the Horseshoe Lemma established, we are able to give the long exact sequence we described in
Discussion II.F.2.2.

thm101318a Theorem II.F.3.3. Let L be an R-module and let

0 // N ′ // N // N ′′ // 0
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be a sequence of R-modules. There exists the following long exact sequence associated to ExtiR(−, L).

0 // HomR(N ′′, L) // HomR(N,L) // HomR(N ′, L)

// Ext1
R(N ′′, L) // Ext1

R(N,L) // Ext1
R(N ′, L)

// · · · · · · // Exti−1
R (N ′, L)

// ExtiR(N ′′, L) // ExtiR(N,L) // ExtiR(N ′, L)

// Exti+1
R (N ′′, L) // · · ·

Proof. By Discussion II.F.2.2 we need only justify the existence of a short exact sequence

0 // Q′• // Q• // Q′′• // 0

of R-complexes where Q′•, Q•, and Q′′• are projective resolutions of N ′, N , and N ′′, respectively. This has
just been shown in the Horseshoe Lemma above, so the proof is done. �

II.F.4. Mapping Cones
section062921u

In this section we explore mapping cones and quasiisomorphisms. Both are needed for Lemmas II.F.5.1
and II.F.5.3, which are each used directly to prove Ext is well-defined (Theorem II.F.5.2). Proposition II.F.4.9
and Lemma II.F.4.13 from Schanuel are also used directly in the proof of the well-definedness of Ext.

def120417i Definition II.F.4.1. Let X• be an R-complex. The shift of X•, or the suspension of X•, is denoted
ΣX• where

(ΣX)i = Xi−1 and ∂ΣX
i = −∂Xi−1.

rmk120417j Remark II.F.4.2. We line up the R-complex X• with its shift.

X• = · · ·
∂Xi+1 // Xi

∂Xi // Xi−1

∂Xi−1 // · · ·

ΣX• = · · ·
−∂Xi // Xi−1

−∂Xi−1 // Xi−2

−∂Xi−2 // · · ·

We now verify that the shift of X• is itself an R-complex and that

Hi (ΣX•) = Hi−1(X•).

Colloquially, we want to verify that the homology of a shift is just a shift in the homology. Certainly ΣX•
is a sequence of R-module homomorphisms and since X• is an R-complex we also have

−∂Xi−1 ◦ −∂Xi = ∂Xi−1 ◦ ∂Xi = 0.

Hence ΣX• is an R-complex. By definition of homology we have

Hi−1(X•) =
Ker ∂Xi−1

Im ∂Xi
Hi (ΣX•) =

Ker−∂Xi−1

Im−∂Xi
and these two are equal since Ker−∂Xi−1 = Ker ∂Xi−1 and Im−∂Xi = Im ∂Xi .

def120417k Definition II.F.4.3. Let f• : X• −→ Y• be a chain map. We define the mapping cone of f• as

Cone(f•) = · · · //
Yi
⊕

Xi−1

∂Yi fi−1

0 −∂Xi−1


//
Yi−1

⊕
Xi−2

// · · ·
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where for every i ∈ Z

Cone(f•)i =
Yi
⊕

Xi−1

and

∂
Cone(f•)
i

(
yi
xi−1

)
=

(
∂Yi fi−1

0 −∂Xi−1

)(
yi
xi−1

)
=

(
∂Yi (yi) + fi−1(xi−1)
−∂Xi−1(xi−1)

)
.

prop120517a Proposition II.F.4.4. If f• : X• −→ Y• is a chain map, then Cone(f•) is an R-complex.

Proof. First we verify that the cone is a sequence of R-module homomorphisms. Each element
Cone(f•)i is a direct sum of two R-modules so is itself an R-module. Taking an arbitrary r ∈ R and
two elements from Cone(f•)i we observe

∂
Cone(f•)
i

(
r

(
yi
xi−1

)
+

(
y′i
x′i−1

))
=

(
∂Yi fi−1

0 −∂Xi−1

)(
ryi + y′i

rxi−1 + x′i−1

)
=

(
∂Yi (ryi + y′i) + fi−1(rxi−1 + x′i−1)

−∂Xi−1(rxi−1 + x′i−1)

)
=

(
r∂Yi (yi) + ∂Yi (y′i) + rfi−1(xi−1) + fi−1(x′i−1)

r · −∂Xi−1(xi−1)− ∂Xi−1(x′i−1)

)
=

(
r∂Yi (yi) + rfi−1(xi−1)

r · −∂Xi−1(xi−1)

)
+

(
∂Yi (y′i) + fi−1(x′i−1)
−∂Xi−1(x′i−1)

)
= r ·

(
∂Yi (yi) + fi−1(xi−1)
−∂Xi−1(xi−1)

)
+

(
∂Yi (y′i) + fi−1(x′i−1)
−∂Xi−1(x′i−1)

)
= r · ∂Cone(f•)

i

(
yi
xi−1

)
+ ∂

Cone(f•)
i

(
y′i
x′i−1

)
.

Since the well-definedness of ∂
Cone(f•)
i is a direct consequence of the well-definedness of the maps ∂Yi , fi−1,

and ∂Xi−1 for each i ∈ Z, we conclude each ∂
Cone(f•)
i is an R-module homomorphism. Moreover

∂
Cone(f•)
i ◦ ∂Cone(f•)

i+1 =

(
∂Yi fi−1

0 −∂Xi−1

)(
∂Yi+1 fi

0 −∂Xi

)
=

(
∂Yi ◦ ∂Yi+1 ∂Yi ◦ fi − fi−1 ◦ ∂Xi

0 ∂Xi−1 ◦ ∂Xi

)
=

(
0 0
0 0

)
.

The (1, 1)-entry of the composition is zero, because Y• is an R-complex and similarly for the (2, 2)-entry.
The (1, 2)-entry is zero, because f• is a chain map. This concludes the proof. �

ex120517b Example II.F.4.5. Here we introduce some special cases of the Koszul complex. (See Section II.G.3 for
more on this topic.) Fix an element x ∈ R and define the R-complex

X• 0 // R
x· // R // 0 .

Fix another element y ∈ R and define the following chain map.

X•

y•

��

0 // R
x· //

y·
��
�

R //

y·
��

0 // 0

X• 0 // 0 // R
x· // R // 0
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We can compute the mapping cone of f•.

Cone(y•) =
0
⊕
0

//
0
⊕
R

0 y
0 −x


//
R
⊕
R

x y
0 0


//
R
⊕
0

//
0
⊕
0

∼= 0 // R

 y
−x


// R2

(
x y

)
// R // 0

It is sensible that we should call this a complex, since

(
x y

)( y
−x

)
= xy − xy = 0.

prop120517c Proposition II.F.4.6. Let f• : X• −→ Y• be a chain map.

prop120517c.a (a) There is a chain map ε• : Y• −→ Cone(f•) defined as the sequence of natural injections

εi : Yi
� � //

Yi
⊕

Xi−1

= Cone(f•)i .

prop120517c.b (b) There is a chain map τ• : Cone(f•) −→ ΣX• defined as the sequence of natural surjections

τi : Cone(f•) =
Yi
⊕

Xi−1

// Xi−1 = (ΣX•)i .

prop120517c.c (c) The following sequence is exact.

0 // Y•
ε• // Cone(f•)

τ• // ΣX• // 0

prop120517c.d (d) In the associated long exact sequence, the connecting map

ði : Hi (ΣX•) // Hi−1(Y•)

is equal to Hi−1(f•).

Proof. To prove the first three parts, it suffices to fix an arbitrary i ∈ Z and show the following diagram
is commutative with exact rows.

0 // Yi εi

1
0


//

∂Yi

��

Yi
⊕

Xi−1

τi

(
0 1

)
//

∂Yi fi−1

0 −∂Xi−1



��

Xi−1
//

−∂Xi−1

��

0

0 // Yi−1 εi−1

//
Yi−1

⊕
Xi−2

τi−2

// Xi−2
// 0
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The rows are exact by Example II.A.1.4. We check commutivity of the two squares by tracking arbitrary
elements around each and thereby complete the proof of parts (a), (b), and (c).

y � //
_

��

(
y
0

)
_

��

(
y
x

)
� //

_

��

x_

��
∂Yi (y) //

(
∂Yi (y)

0

) (
∂Yi (y) + fi−1(x)
−∂Xi−1(x)

)
� // −∂Xi−1(x)

(d) Note that Hi (ΣX•) = Hi−1(X•) and let x ∈ Hi−1(X•) be arbitrary. Thus x ∈ Ker−∂Xi−1 ⊆ Xi−1 and
we begin what has become standard for calculating ð. We lift back to the element(

0
x

)
∈

Yi
⊕

Xi−1

which is a preimage of x under τi. It also holds(
∂Yi fi−1

0 −∂Xi−1

)(
0
x

)
=

(
fi−1(x)
−∂Xi (x)

)
=

(
fi−1(x)

0

)
so we may lift to the element fi−1(x) ∈ Yi−1 for which we have

εi−1(fi−1(x)) =

(
fi−1(x)

0

)
.

Hence ði(x) = fi−1(x) = Hi−1(f•)(x) as desired. �

def120517d Definition II.F.4.7. A chain map f• : X• // Y• is a quasiisomorphism if the induced map on ho-

mology

Hi(f•) : Hi(X•) // Hi(Y•)

is an isomorphism, for all i ∈ Z.

ex120517e Example II.F.4.8. If f• : X• −→ Y• is an isomorphism, then it is also a quasiisomorphism. To see
the reason for this, consider that if g• : Y• −→ X• is a two-sided inverse for f•, then the induced map on
homology Hi(g•) : Hi(Y•) −→ Hi(X•) is a two-sided inverse for Hi(f•).

The converse of this, however, fails in general. By way of demonstration, let M be an R-module and let
P• be a projective resolution of M .

P+
• = · · ·

∂P2 // P1

∂P1 // P0
τ // M // 0

We may define also the following chain map, call it τ•.

P• =

τ•

��

· · ·
∂P2 // P1

∂P1 //

��

P0
//

τ

��

0

M• = · · · // 0 // M // 0

While τ• is not an isomorphism (since P1 6= 0 and M not projective, in general), we claim τ• is a quasiiso-
morphism. Since P• is exact at Pi for all i 6= 0, for these i we have the silly isomorphism below.

Hi(τ•) : 0 −→ 0

It suffices then to study the i = 0 position.

H0(τ•) : H0(P•) //

‖

H0(M•)

‖

P0

Im ∂P1

τ̂ // M
0



II.F.4. MAPPING CONES 103

Here τ̂ denotes the map induced by τ (see Proposition II.E.1.3). Since τ is surjective, τ̂ must also be surjective.
Since P+

• is exact, Ker τ = Im ∂P1 and therefore τ̂ is also injective. Hence H0(τ•) is an isomorphism and τ•
is a quasiisomorphism as claimed.

prop120517f Proposition II.F.4.9. A chain map f• : X• −→ Y• is a quasiisomorphism if and only if Cone(f•) is
exact.

Proof. Consider the long exact sequence

· · · // Hi(Cone(f•)) // Hi−1(X•)

// Hi−1(Y•) // Hi−1(Cone(f•)) // Hi−2(X•)

// Hi−2(Y•) // · · ·

from the mapping cone (see Proposition II.F.4.6 and Theorem II.F.1.2), where the connecting homomor-
phisms are ði = Hi−1(f•). If we suppose f• is a quasiisomorphism, then by definition ði is an isomorphism
for all i and it follows from Lemma II.F.4.10 that

Hi−1(Cone(f•)) = 0.

On the other hand, if we suppose Cone(f•) is exact, then each section of our long exact sequence is of the
form

0 // Hi−1(X•)
Hi(f•)// Hi−1(Y•) // 0

where exactness at Hi−1(X•) and Hi−1(Y•) forces KerHi(f•) = 0 and ImHi(f•) = G, respectively. Hence
Hi(f•) is an isomorphism and f• is a quasiisomorphism by definition. �

lem120617a Lemma II.F.4.10. Given A, B, C, D, and E are R-modules and given the exact sequence

A
∼= // B

f // C
g // D

∼= // E

it follows that C = 0.

Proof. The isomorphism on the left forces ker(f) = B, implying ker(g) = Im f = 0. The other
isomorphism forces Im g = 0 and it follows that C = 0. �

lem120617b Lemma II.F.4.11. Consider the following exact sequence with n ≥ 1.

0 // Kn
// Pn−1

// · · · // P1
// P0

// 0

If P0, . . . , Pn−1 are all projective, then Kn is projective as well.

Proof. We tackle a few base cases first. If n = 1, then the exactness of the sequence implies K1
∼= P0

and K1 is therefore projective. If n = 2, then since P0 is projective, the sequence below splits.

0 // K2
// P1

// P0
// 0

That is, P1
∼= K2⊕P0. Since P1 is projective, it follows thatK2 must also be projective (see Lemma II.F.4.12).

Assume now that n ≥ 3 and the result holds for all sequences of length n − 1. Our exact sequence is
therefore of the form

0 // Kn
∂n // · · · ∂3 // P2

∂2 // P1
∂1 // P0

// 0
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which we may ‘slice’ using the kernel of the 1st differential.

0

P0

;;

0 // Kn
// · · · // P2

∂2 //

  

P1
∂1

//

∂1

::

P0
// 0

K2

⊆

<<

##

= Im ∂2 = Ker ∂1

0

==

0

The diagonal we have constructed guarantees K2 is projective by the n = 2 base case. Since the exact
sequence

0 // Kn
// · · · // P2

// K2
// 0

is therefore covered under the induction hypothesis, we conclude Kn is projective as well. �

lem120617c Lemma II.F.4.12. Two R-modules A and B are projective if and only if A⊕B is projective.

Proof. Let S be an arbitrary exact sequence of R-modules.

S = · · ·
∂Si+2 // Si+1

∂Si+1 // Si
∂Si // Si−1

∂Si−1 // · · ·

We will show

HomR(A⊕B,S) ∼= HomR(A,S)⊕HomR(B,S)

as R-complexes. For each i ∈ Z define the map

Fi : HomR(A⊕B,Si) // HomR(A,Si)⊕HomR(B,Si)

ρ � // (ρA, ρB)

where

ρA : A // Si ρB : B // Si

a � // ρ(a, 0) b � // ρ(0, b).

Since ρA and ρB are compositions of ρ with natural inclusions, each is a well-defined R-module homomor-
phism and therefore Fi is also a well-defined function. It is straightforward to show that Fi is also R-linear.
Each Fi is also surjective since for any (α, β) ∈ HomR(A,Si)⊕HomR(B,Si) we may define

γ : A⊕B // Si

(a, b) � // α(a) + β(b)

for which

Fi(γ) = (γA, γB) = (α, β).

Consider also that if Fi(ρ) = 0, then ρA = 0ASi and ρB = 0BSi and hence ρ = 0A⊕BSi
, so Fi is injective (refer to

Fact II.C.5.10 for 0−− notation).
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Therefore the isomorphism of R-complexes will follow once we have verified the commutivity of the
following diagram.

...

��

...

��

γY

��

! .. (γA, γB)
f

��

HomR(A⊕B,Si)
Fi //

(∂Si )∗

��

HomR(A,Si)⊕HomR(B,Si)

(∂Si )∗⊕(∂Si )∗

��
HomR(A⊕B,Si−1)

��

Fi−1

// HomR(A,Si−1)⊕HomR(B,Si−1)

��

(
(∂Si ◦ γA), (∂Si ◦ γB)

)
‖?

∂Si ◦ γ � 00
(
(∂Si ◦ γ)A, (∂

S
i ◦ γ)B

)
...

...

To this end, consider that for any a ∈ A we have

(∂Si ◦ γA)(a) = ∂Si (γA(a)) = ∂Si (γ(a, 0)) = (∂Si ◦ γ)(a, 0) = (∂Si ◦ γ)A(a).

Similarly, for any b ∈ B we have

(∂Si ◦ γB)(b) = ∂Si (γB(b)) = ∂Si (γ(b, 0)) = (∂Si ◦ γ)(b, 0) = (∂Si ◦ γ)B(b).

Hence F• is an isomorphism of R-complexes. Therefore we have

HomR(A⊕B,S) exact ⇐⇒ HomR(A,S)⊕HomR(B,S) exact

⇐⇒ HomR(A,S), HomR(B,S) both exact

and therefore A⊕B is projective if and only if A and B are both projective. �

lem120617d Lemma II.F.4.13 (Schanuel). Consider exact sequences

0 // Kn

∂Pn // Pn−1

∂Pn−1 // · · ·
∂P2 // P1

∂P1 // P0
τ // M // 0

0 // Ln
∂Qn // Qn−1

∂Qn−1 // · · ·
∂Q2 // Q1

∂Q1 // Q0
π // M // 0

such that P0, . . . , Pn−1, Q0, . . . , Qn−1 are all projective. Then

Kn projective ⇐⇒ Ln projective.

Proof. By the proof of Proposition II.E.2.2, we can lift the identity map idM to build a chain map
between the two sequences. That is, there exist R-module homomorphisms f0, . . . , fn that make the following
diagram commute.

0 // Kn
//

fn

��

Pn−1
//

fn−1

��

· · · // P1
//

f1

��

P0
//

f0

��

M //

idM

��

0

0 // Ln // Qn−1
// · · · // Q1

// Q0
// M // 0

Let fi be the zero map for all i /∈ {0, . . . , n} and truncate the two resolutions. We have a chain map

f• : P• // Q• in the display below.

· · · // 0 //

��

Kn
//

fn

��

Pn−1
//

fn−1

��

· · · // P1
//

f1

��

P0
//

f0

��

0 //

��

· · ·

· · · // 0 // Ln // Qn−1
// · · · // Q1

// Q0
// 0 // · · ·



II.F.5. WELL-DEFINEDNESS OF EXT 106

As in Example II.F.4.8, one can check that f• is a quasiisomorphism and thus by Proposition II.F.4.9 we
know Cone(f•) is exact, which we write below.

0 // Kn
//
Ln
⊕

Pn−1

//
Qn−1

⊕
Pn−2

// · · · //
Q1

⊕
P0

// Q0
// 0

If we assume Ln is projective, then Ln⊕Pn−1 is projective andKn must also be projective under Lemma II.F.4.11.
Running this entire argument again having placed Q+

• in the top of our ladder diagram would yield an
identical result, so the forward implication is proven by symmetry. �

II.F.5. Well-Definedness of Ext
section062921v

With all the necessary tools now in place, we finally prove that Ext is well-defined.

lem120617e Lemma II.F.5.1. If P• is an exact R-complex such that each Pi is projective and Pi = 0 for all i < i0
for some fixed i0 ∈ Z, then for any R-module N , HomR(P•, N) is exact.

Proof. The given complex has the following form around the i0 position.

P• = · · ·
∂Pi0+2 // Pi0+1

∂Pi0+1 // Pi0 // 0 // · · ·

Let Kt denote Ker ∂Pt−1 and ‘slice’ the above exact sequence.

0

##

0

$$

0 0

Kt+1

""

Kt−1

;;

""

Pi0

<<

=

!!
· · · // Pt

∂Pt //

  

Pt−1

::

∂Pt−1

// · · ·

##

∂Pi0+2 // Pi0+1

;;

∂Pi0+1

// Pi0 // 0

Kt

<<

##

Ki0+2

99

%%
0

==

0 0

::

0

(II.F.5.1.1) eqn112618d

The diagonals are all exact and both Pi0 , Pi0+1 are projective, so by Lemma II.F.4.11, the module Ki0+2

is projective. If we let t > i0 + 2 and assume Kt−1 is projective, then since Pt−1 is projective, the same
lemma guarantees Kt is projective as well. Hence by induction Kt is projective for all t ≥ i0 + 2, implying
HomR(D,N) is split exact for any R-module N , where D is any diagonal sequence in (II.F.5.1.1). Let
(−)∗ = HomR(−, N) and we have the following commutative diagram.

0 cc 0 dd 0 0

K∗t+1 bb
K∗t−1

{{

bb
P ∗i0

}}

``
=

· · · oo P ∗t oo
∂P∗t

``
P ∗t−1

{{
oo

∂P∗t−1

· · · bb oo
∂P∗i0+2

P ∗i0+1

||
oo

∂P∗i0+1

P ∗i0
oo 0

K∗t
||

cc K∗i0+2

zz

ee

0
}}

0 0
{{

0

Since the diagonals are exact and the diagrams all commute, a diagram chase shows that the row must also
be exact. That is, P ∗• = HomR(P•, N) is exact, as desired. �

Ladies and gentlemen, we have arrived:

ExtWellDefined Theorem II.F.5.2. Ext is independent of choice of projective resolution.
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Proof. Let P• and Q• be two projective resolutions of an R-module M and let f• : P• // Q• be a

lift of the identity on M (see Proposition II.E.2.2). From the work done in the proof of Lemma II.F.4.13,
this implies Cone(f•) is exact.

Cone(f•) = · · · //
Q2

⊕
P1

//
Q1

⊕
P0

// Q0
// 0

Since every module Qi ⊕ Pi−1 is projective, by Lemma II.F.5.1 we have HomR(Cone(f•), N) exact for any
R-module N . Moreover the shift Σ HomR(Cone(f•), N) is also exact since

Hi (Σ?) = Hi−1(?).

By Lemma II.F.5.3
Σ HomR(Cone(f•), N) ∼= Cone (HomR(f•, N)) .

Hence by Proposition II.F.4.9 it follows that HomR(f•, N) is a quasiisomorphism and therefore the following
is an isomorphism for any i ∈ Z.

H−i(HomR(f•, N)) : H−i(HomR(Q•, N))
∼= // H−i(HomR(P•, N)) .

This completes the proof. �

lem051818a Lemma II.F.5.3. Let R be a commutative ring with identity, let M be an R-module, and consider a chain
map F• : X• → Y•. Then

Cone(HomR(F•,M)) ∼= Σ HomR(Cone(F•),M).

Proof. From our chain map

X•

F•

��

· · ·
∂Xi+1 // Xi

Fi

��

∂Xi // Xi−1

Fi−1

��

∂Xi−1 // · · ·

Y• · · ·
∂Yi+1

// Yi
∂Yi

// Yi1
∂Yi−1

// · · ·

we are able to write

Cone(F•) = · · · //
Yi
⊕

Xi−1

∂Yi Fi−1

0 −∂Xi−1


//
Yi−1

⊕
Xi−2

// · · · .

Applying the contravariant functor HomR(−,M) we write HomR(Cone(F•),M) below.

· · · // HomR

 Y−i
⊕

X−i−1

,M


∂Y−i+1 F−i

0 −∂X−i

∗
// HomR

Y−i+1

⊕
X−i

,M

 // · · ·

The shift Σ HomR(Cone(F•),M) follows readily, which we write below.

· · · // HomR

Y−i+1

⊕
X−i

,M

 −

∂Y−i+2 F−i+1

0 −∂X−i+1

∗
// HomR

Y−i+2

⊕
X−i+1

,M

 // · · ·

Now we write down Cone(HomR(F•,M)). We begin with the induced chain map

HomR(Y•,M)

HomR(F•,M)

��

· · ·
(∂Y−i)

∗

// HomR(Y−i,M)

F∗−i
��

(∂Y−i+1)
∗

// HomR(Y−i+1,M)

F∗−i+1

��

(∂Y−i+2)
∗

// · · ·

HomR(X•,M) · · ·
(∂X−i)

∗
// HomR(X−i,M)

(∂X−i+1)
∗
// HomR(X−i+1,M)

(∂X−i+2)
∗
// · · ·
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and take the cone

Cone(HomR(F•,M)) = · · · //
HomR(X−i,M)

⊕
HomR(Y−i+1,M)

(∂X−i+1

)∗
F ∗−i+1

0 −
(
∂Y−i+2

)∗
//
HomR(X−i+1,M)

⊕
HomR(Y−i+2,M)

// · · ·

On the next page we write down explicitly the isomorphism between these two complexes, because what this

document needs is another large commutative diagram. The vertical maps send
(
a b

)
to

(
b
−a

)
and each

is an isomorphism. Since the commutivity of the diagram is depicted as well, the diagram completes the
proof. �
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( φ
ψ
)

∈

*
**

L ��

( −φ
◦
∂
Y −
i+

2
−
φ
◦
F
−
i+

1
+
ψ
◦
∂
X −
i+

1

)
l 		

Σ
H

om
R

(C
on

e(
F
•)
,M

)
=

��

··
·

// H
om

R

 Y −
i+

1

⊕
X
−
i

,M

 

��

 −
∂
Y −
i+

2
−
F
−
i+

1

0
∂
X −
i+

1

 ∗

// H
o
m
R

 Y −
i+

2

⊕
X
−
i+

1

,M

 
//

��

··
·

C
on

e(
H

om
R

(F
•,
M

))
=

··
·

//
H

om
R

(X
−
i,
M

)
⊕

H
om

R
(Y
−
i+

1
,M

)
 ( ∂X −i

+
1

) ∗
F
∗ −
i+

1

0
−
( ∂Y −i

+
2

) ∗ 
//H

o
m
R

(X
−
i+

1
,M

)
⊕

H
o
m
R

(Y
−
i+

2
,M

)

// ·
··

( ψ −φ
) �

//( ψ◦
∂
X −
i+

1
−
φ
◦
F
−
i+

1

φ
◦
∂
Y −
i+

2

) =

( −φ
◦
F
−
i+

1
+
ψ
◦
∂
X −
i+

1

φ
◦
∂
Y −
i+

2

)
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Exercises

exer171121a Exercise II.F.5.4. Let M,M ′, N be R-modules. Let P• be a projective resolution of M . Let P ′• be a
projective resolution of M ′. Let Q• be a projective resolution of N .

exer171121a1 (a) Prove that P• ⊕ P ′• is a projective resolution of M ⊕M ′.
exer171121a2 (b) Prove that ExtiR(M ⊕M ′, N) ∼= ExtiR(M,N)⊕ ExtiR(M ′, N) for all i.
exer171121a3 (c) Prove that ExtiR(N,M ⊕M ′) ∼= ExtiR(N,M)⊕ ExtiR(N,M ′) for all i.
exer171121a4 (d) State and prove versions of parts (b) and (c) for modules M1, . . . ,Mn.

exer060202q Exercise II.F.5.5. Consider a short exact sequence of chain maps.

0→M ′•
F•−−→M•

G•−−→M ′′• → 0

exer060202qa (a) Prove that M ′• is exact if and only if G• is a quasiisomorphism.
exer060202qb (b) Prove that M ′′• is exact if and only if F• is a quasiisomorphism.

exer040301 Exercise II.F.5.6. (Functoriality of long exact sequences) Let φ : L → N be an R-module homomor-
phism. Given an exact sequence of R-module homomorphisms

0→ K
g−→M

f−→ C → 0

show that there are commutative diagrams of long exact sequences:

· · · // ExtiR(N,K) //

��

ExtiR(N,M) //

��

ExtiR(N,C) //

��

Exti+1
R (N,K) //

��

· · ·

· · · // ExtiR(L,K) // ExtiR(L,M) // ExtiR(L,C) // Exti+1
R (L,K) // · · ·

· · · // ExtiR(C,L) //

��

ExtiR(M,L) //

��

ExtiR(K,L) //

��

Exti+1
R (C,L) //

��

· · ·

· · · // ExtiR(C,N) // ExtiR(M,N) // ExtiR(K,N) // Exti+1
R (C,N) // · · ·

where the vertical maps are induced by φ.



CHAPTER II.G

Additional Topics

chapter062921e
In this chapter, we give a colloquial treatment of some further properties of Ext. We also briefly discuss

the Koszul complex and some further homological constructions.

II.G.1. Other Derived Functors
section062921w

To obtain ExtiR(M,N), we know to take a projective resolution of M , apply HomR(−, N) to the resolu-
tion, and take homology. More generally, given a functor F, one can take an appropriate resolution, apply F
to the resolution, and take homology. Here the type of resolution depends entirely on the type of exactness
and the variance of the functor to be applied. In this section we explore some such functors.

ex122017b Example II.G.1.1. The functor we already know is Ext.

ExtiR(M,N) = H−i(HomR(P•, N))

We say Ext is the right-derived functor of HomR(−, N) and we use i as a superscript, because HomR(−, N)
is contravariant (i.e., arrow-reversing).

ex122017c Example II.G.1.2. Closely related to Ext is Tor, the left-derived functor of the tensor product −⊗RN .

TorRi (M,N) = H−i(P• ⊗R N)

Here we use i as a subscript, because −⊗R N is covariant (i.e., arrow-preserving).

Other constructions require different resolutions, which we define next.

def122017d Definition II.G.1.3. An augmented injective resolution of N is an exact sequence

+I• = 0 // N
ε // I0

∂I0 // I−1

∂I−1 // I−2

∂I−2 // · · ·

where Ii is injective for all i ∈ Z. The corresponding truncated injective resolution is

I• = 0 // I0
∂I0 // I−1

∂I−1 // I−2

∂I−2 // · · ·

which is not exact in general.

fact122017e Fact II.G.1.4. For all R-modules N , the exists an injective module I0 and an injective R-module homo-
morphism ε : N −→ I0. Colloquially, we say every R-module N is a ‘submodule’ of an injective R-module.
A consequence of this is the existence of an injective resolution for any R-module N , built inductively as the
following diagram suggests.

0

  

0 0

N ′

==

ε′

!!

N ′′′

<<

0 // N //

=
��

I0

>>

// I−1
//

!!

I−2
//

<<

· · ·

N

ε

??

N ′′

""

ε′′

==

0

>>

0

<<

0

111



II.G.1. OTHER DERIVED FUNCTORS 112

where N (i) = Coker
(
ε(i−1)

)
.

ex122017f Example II.G.1.5. The ith right-derived functor of HomR(M,−) is H−i(HomR(M, I•)).

The following result says we can compute Ext modules from injective resolutions as well as projective
resolutions.

thm122017g Theorem II.G.1.6 (Balance for Ext). Let M and N by two R-modules, let P• be a projective resolution
for M , and let I• be an injective resolution for N . Then H−i(HomR(M, I•)) ∼= ExtiR(M,N).

Proof. We give only a sketch of this proof. There exists a notion of HomR(P•, I•) and one uses mapping
cones as in Theorem II.F.5.2 to show that the induced chain maps

HomR(P•, N)
' // HomR(P•, I•) HomR(M, I•)

'oo

are quasiisomorphisms. From this one concludes directly that

ExtiR(M,N) ∼= HomR(P•, N) ∼= HomR(P•, I•) ∼= HomR(M, I•).

�

Similarly, we have the following.

thm122017h Theorem II.G.1.7 (Balance for Tor). For any R-modules M and N with respective projective resolu-
tions P• and Q•, we have the following isomorphisms.

Hi(P• ⊗R N) ∼= Hi(P• ⊗R Q•) ∼= Hi(M ⊗R Q•)

Next, we consider Grothendieck’s local cohomology.

def122017i Definition II.G.1.8. Let a ≤ R be an ideal and let M be an R-module. The a-torsion functor, denoted
Γa, is defined on modules as

Γa(M) = {m ∈M | anm = 0, ∀n� 0} .
See Facts II.G.1.10 and II.G.1.11 for functorial properties.

ex122017j Example II.G.1.9. Given the ring Z and an ideal pZ the p-torsion functor can be written

ΓpZ(M) = {m ∈M | pnm = 0, ∀n� 0} .
In particular, let p = 2 and let M = Z/144Z. We compute the 2-torsion functor as follows.

ΓpZ

(
Z

144Z

)
∼= ΓpZ

(
Z

24Z
⊕ Z

32Z

)
∼= Γ2Z

(
Z

24Z

)
⊕ Γ2Z

(
Z

32Z

)
∼=

Z

24Z
⊕ 0

∼=
Z

24Z

Note that Γ2Z(Z/32Z) ∼= 0 since 2n acts as a unit on Z/32Z for all n ∈ N.

fact122017k Fact II.G.1.10. For all R-module homomorphisms φ : M −→M ′, we have

φ (Γa(M)) ⊆ Γa(M ′).

A result of this fact is the following commutative diagram, where Γa(φ) is induced from φ by restricting the
domain and codomain.

M
φ //

�

M ′

Γa(M)
?�

⊆

OO

Γa(φ)
// Γa(M ′)
?�

⊆

OO

Proof. Let n ∈ N. If anm = 0, then we also have 0 = φ(anm) = an · φ(m). �

fact122017l Fact II.G.1.11. Γa is a covariant functor and is left-exact.
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ex122017m Example II.G.1.12. The functor Γa is not right-exact in general. Consider the short exact sequence

0 // Z
2· // Z // Z/2Z // 0

to which we apply Γ2Z to obtain

0 // Γ2Z(Z)
2· //

‖

Γ2Z(Z) //

‖

Γ2Z(Z/2Z) //

‖

0

0 0 Z/2Z 6= 0

which is not exact.

def122017n Definition II.G.1.13. Let I• be an injective resolution of an R-module N . The ith local cohomology
module associated to N with support in a ≤ R is the ith right-derived functor of Γa.

Hi
a(N) = H−i(Γa(I•))

ex122017o Example II.G.1.14. Let Z be both the ring and module in this example and let a = 2Z. The following
is an augmented injective resolution for Z.

+I• = 0 // Z // Q // Q/Z // 0

Applying Γa to the truncated resolution we get the following.

Γa(I•) = 0 // Γ2Z(Q) // Γ2Z(Q/Z) // 0

Since 2n ∈ Q is a unit for n = 1, 2, 3, . . . we write equivalently

Γa(I•) = 0 // 0 // Γ2Z(Q/Z) // 0

where Γ2Z(Q/Z) =
{

(a/2n) | a ∈ Z, n ∈ N
}
6= 0. We now compute the cohomology as follows.

Hi
2Z =

{
0 i 6= 1

Γ2Z(Q/Z) i = 1

II.G.2. Ext and Extensions
section062921x

The point of this section is that one can define an equivalence relation on sets of short exact sequences
in such a way that the set of equivalence classes is naturally in bijection with an Ext1

R-module.

def122117g Definition II.G.2.1. An extension of M by N is a short exact sequence

ζ = 0 // N
f // A

g // M // 0.

We also define an equivalence relation on the set of extensions of M by N . If ζ ′ is another extension of M ,
then ζ ∼ ζ ′ if there exists a commutative diagram of the following form.

ζ = 0 // N
f //

1

��
�

A
g //

φ

��
�

M //

1

��

0

ζ ′ = 0 // N
f ′
// A′

g′
// M // 0

The collection of all equivalence classes of such extensions is a set which we denote E1
R(M,N).

thm122317a Theorem II.G.2.2 (Yoneda). For any R-modules M and N , there exists a bijective function

Φ : E1
R(M,N) // Ext1

R(M,N)

which we construct next.
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con122317b Construction II.G.2.3. Let an extension ξ be given:

ξ = 0 // N
f // A

g // M // 0 .

If P+
• is a projective resolution of M , by Proposition II.E.2.2 we can lift the identity map on M to build the

following ladder diagram.

P+
• = · · ·

∂P3 // P2

∂P2 //

��
�

P1

∂P1 //

β

��
�

P0
τ //

α

��
�

M //

idM

��

0

ξ = 0 // N
f
// A

g
// M // 0

The commutivity of the diagram implies 0 = β ◦ ∂P2 =
(
∂P2
)∗

(β) and therefore

β ∈
Ker

(
∂P2
)∗

Im
(
∂P1
)∗ = Ext1

R(M,N).

Hence we define the bijection proposed in Theorem II.G.2.2 as follows.

Φ([ξ]) = β

We give a sketch of the proof that this is well-defined. We suppose ξ ∼ ξ′ and we want to show β = β′,
where ξ′ is

ξ′ = 0 // N
f ′ // A′

g′ // M // 0 .

and β′ is in the following ladder diagram.

P+
• = · · ·

∂P3 // P2

∂P2 //

��
�

P1

∂P1 //

β′

��
�

P0
τ //

α′

��
�

M //

idM

��

0

ξ′ = 0 // N
f ′
// A′

g′
// M // 0

For this it suffices to show β − β′ ∈ Im (∂P1 )∗. Consider the following diagram, where all the rectangular
diagrams commute, but the triangular ones need not commute.

P2

∂P2 //

��

��

P1

∂P1 //

β′

��

β

~~

P0
τ //

α′

��

α

~~

M //

idM

��

idM

~~

0

��

��

0

��

// N
f //

idN   

A

φ   

g // M

idM   

// 0

��
0 // N

f ′
// A′

g′
// M // 0

Here the map φ comes from the equivalence ξ ∼ ξ′. One can apply HomR(P0,−) to ξ′, which preserves
exactness, and select a map γ ∈ HomR(P0, N) such that f ′ ◦ γ = φ ◦ α − α′. One then shows that
β − β′ = (∂P1 )∗(γ).

Proving the injectivity and surjectivity of this map is beyond the scope of this document. The crux of
the latter is that given any extension ζ we can lift the identity map on M to find an appropriate β.

One can obtain the next result as a corollary of Theorem II.G.2.2. We present a partial alternate proof
that uses technology we have developed completely.

thm110817b Theorem II.G.2.4. For all R-modules M and N , the following are equivalent.

thm110817b.i (i) Ext1
R(M,N) = 0

thm110817b.ii (ii) Every short exact sequence 0 // N // X // M // 0 splits.
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Proof. (i) =⇒ (ii). Consider the short exact sequence

0 // N
ρ // X

φ // M // 0. (II.G.2.4.1) eqn102618a

An associated long exact sequence is

0 // HomR(M,N) // HomR(M,X)
φ∗ // HomR(M,M)

// Ext1
R(M,N) // · · · .

If we assume Ext1
R(M,N) = 0, then φ∗ is surjective and for idM ∈ HomR(M,M), there exists some α ∈

HomR(M,X) such that idM = φ∗(α) = φ ◦ α. Therefore by Fact II.A.1.10, the sequence (II.G.2.4.1) splits
and (ii) holds.

�

II.G.3. The Koszul Complex
section062921y

Here we introduce the Koszul complex in full generality (Defintion II.G.3.5) and study its homology. In
Theorem II.G.3.17 we give a means of detecting regular sequences and in Theorem II.G.3.21 we give three
significant characteristics of R modulo a regular sequence.

rec122317c Recall II.G.3.1. In Proposition II.F.4.6 we saw for any chain map f• : M• −→ N• we have the following
short exact sequence and associated long exact sequence.

0 // N•
ε• // Cone(f•)

π• // ΣM• // 0

· · ·
Hi(ε•) // Hi(Cone(f•))

Hi(π•)// Hi−1(M•)
ði=

Hi−1(f•)
//

‖

Hi−1(N) // · · ·

Hi(ΣM•)

Here ε• and π• are the natural injection and surjection, respectively. (See also Definition II.F.4.3.)

ex122317d Example II.G.3.2. If M is an R-module, then we say

M• = 0 // M // 0

is a chain complex concentrated in degree zero. For any r ∈ R we may also define a chain map

M• =

µr•
��

0 // M //

r·
��

0

M• = 0 // M // 0

which yields the cone

Cone(µr•) = 0 // M
r // M // 0.

def122317e Definition II.G.3.3. For any R-module M and any r ∈ R, define the following submodule.

(0 :
M
r) = {m ∈M | rm = 0}

This is the largest submodule of M annihilated by r, called the annihilator of r in M . More generally, for
any S ⊆ R we have

(0 :
M
S) = {m ∈M | sm = 0, ∀s ∈ S } .

prop122317g Proposition II.G.3.4. Let X• be an R-complex and let r ∈ R be fixed. Consider the homothety map
µr• : X• −→ X• defined as in Discussion II.E.2.4 and the short exact sequence

0 // X• // Cone(µr•) // ΣX• // 0 .

prop122317g.a (a) In the associated long exact sequence, the connecting map is also a multiplication map, i.e.,

ði(xi−1) = r · xi−1.
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prop122317g.b (b) For any i ∈ Z, there exists a short exact sequence

0 // Hi(X•)

r ·Hi(X•)
// Hi (Cone(µr•)) // ( 0 : r

Hi−1(X•)
) // 0 .

Proof. (a) This follows directly from the definition of the connecting map, properties of cosets, and
Recall II.G.3.1.

ði(xi−1) = Hi−1(µr•)(xi−1) = µri−1(xi−1) = rxi−1 = r · xi−1

(b) By part (a) and from our comments in II.G.3.1, the associated long exact sequence is as follows.

· · · // Hi(X•)
r· // Hi(X•)

Hi(ε•)// Hi(Cone(µr•))
Hi(π•)// Hi−1(X•)

r· // Hi−1(X•) // · · ·

From the First Isomorphism Theorem for modules we have

ImHi(ε•) ∼=
Hi(X•)

KerHi(ε•)
=

Hi(X•)

r ·Hi(X•)

since the kernel of Hi(ε•) is the image of r· by the exactness of the sequence. Therefore when we ‘slice’ the
long exact sequence around Hi(Cone(µr•)) we get the following.

0 // ImHi(ε•) //

∼ =

Hi(Cone(µr•)) // ImHi(π•) //

‖

0

Hi(X•)

r ·Hi(X•)
Ker r·
‖

( 0 : r
Hi−1(X•)

)

�

def122517a Definition II.G.3.5. Here we define a particular R-complex, called the Koszul complex. Given an
R-module M and x1, . . . , xn ∈ R, we define K•(x;M) inductively on the length of the sequence. Let
x = x1, . . . , xn and x′ = x1, . . . , xn−1.

n = 0 K•(∅;M) = 0 // M // 0 = M•

n = 1 K•(x1;M) = 0 // M
x1 // M // 0 = Cone

(
M•

x1· // M•

)
n ≥ 2 K•(x;M) = Cone

(
K•(x

′;M)
xn· // K•(x′;M)

)
We define also the following shorthand notations.

Hi(x;M) = Hi(K•(x;M)) K•(x) = K•(x;R) Hi(x) = Hi(x;R)

We will use the above notation for x and x′ throughout the rest of this section.

ex122917a Example II.G.3.6. By the previous definition K•(x, y;M) is the cone of the following chain map.

K•(x;M)

y·
��

0 // M
x· //

y·

��

M //

y·

��

0 // 0

K•(x;M) 0 // 0 // M
x·
// M // 0

This yields

K•(x, y;M) =
0
⊕
0

0 0
0 0


//

0
⊕
M

0 y
0 −x


//
M
⊕
M

x y
0 0


//
M
⊕
0

0 0
0 0


//
0
⊕
0

or more simply

K•(x, y;M) = 0 // M

 y
−x


// M2

(
x y

)
// M // 0 .
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To find K•(x, y, z;M) we take the cone of the following chain map.

K•(x, y;M) =

z·
��

0 //

��

M

 y
−x


//

z·

��

M2

(
x y

)
//

z·I2
��

M //

z·

��

0 //

��

0

K•(x, y;M) = 0 // 0 // M  y
−x


// M2(

x y
)// M // 0

So we have

K•(x, y, z;M) =
0
⊕
0

//
0
⊕
M


0 z
0 −y
0 x


//
M
⊕
M2


y z 0
−x 0 z
0 −x −y


//
M2

⊕
M

x y z
0 0 0


//
M
⊕
0

//
0
⊕
0

which we can simplify to write

K•(x, y, z;M) = 0 // M


z
−y
x


// M3

y z 0
−x 0 z
0 −x −y


// M3

(
x y z

)
// M // 0.

ex122917b Example II.G.3.7. Consider the polynomial ring R = A[x] where A is a commutative ring with identity
and x is an indeterminate. The Koszul complex for this singleton sequence is

K•(x) = 0 // R
1

x· // R
0

// 0

and we may calculate the homology modules of this complex. Since x is a non-zero-divisor

H1(x) ∼= ker(x·) = 0.

At the only other position of any potential interest we have

H0(x) =
R

Imx·
=

R

xR
∼= A.

ex122917c Example II.G.3.8. Now consider the polynomial ring in two variables R = A[x, y], and we again calcu-
late the homology modules of this complex.

K•(x, y) = 0 // R
2

 y
−x


// R2

1

(
x y

)
// R

0
// 0

The zero position and second position are each straightforward.

H0(x, y) =
R

Im
(
x y

) =
R

(x, y)
∼= A

H2(x, y) =
Ker

(
y −x

)T
0

∼= (0 :
R
y) ∩ (0 :

R
x) = 0

We claim the homology is zero at the first position as well, for which it suffices to show Ker
(
x y

)
=

Im
(
y −x

)T
. The reverse containment holds because K•(x, y) is an R-complex.

For any
(
f g

)T ∈ Ker
(
x y

)
we have gy = −fx, so x|g and y|f . Therefore let g1, f1 ∈ R such that

g = xg1 and f = yf1. It follows that

xy(f1 + g1) = xyf1 + xyg1 = xf + yg = 0
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and hence f1 + g1 = 0, so g1 = −f1 and g = −xf1. Finally this gives(
f
g

)
=

(
yf1

−xf1

)
= f1

(
y
−x

)
∈
〈(

y
−x

)〉
= Im

(
y
−x

)
so the forward containment holds.

ex122917d Example II.G.3.9. Let A be a field and define the ring

R =
A[X,Y ]

(XY )

where X and Y are indeterminates. Let x, y ∈ R denote X,Y , respectively. The Koszul complex is then
written the same as in the previous example.

K•(x, y) = 0 // R
2

 y
−x


// R2

1

(
x y

)
// R

0
// 0

Also as in the previous example, the homology modules in the zeroth and second positions are straightforward
to calculate.

H0(x, y) ∼=
R

(x, y)R
∼= A

H2(x, y) = {r ∈ R | xr = 0 = yr} = yR ∩ xR = xyR = 0

We claim H1(x, y) ∼= A. As in Example II.G.3.8, let
(
f g

)T ∈ Ker
(
x y

)
. Using the canonical basis

{1, x, y, x2, y2, . . . } for R over A we may write f and g as the following finite sums.

f = a+ x
∑
i

bix
i + y

∑
j

cjy
j

g = d+ x
∑
i

eix
i + y

∑
j

vjy
j

By virtue of being in the kernel we have

0 = fx+ gy

= ax+ x2
∑
i

bix
i + xy

∑
j

cjy
j + dy + yx

∑
i

eix
i + y2

∑
j

vjy
j

= ax+ x2
∑
i

bix
i + dy + y2

∑
j

vjy
j

since xy = 0 ∈ R. Therefore by the linear independence of our basis we have a, d, bi, vj = 0 ∈ A for all i and
j, so we write f = y

∑
j cjy

j and g = x
∑
i eix

i. From this we have(
f
g

)
=

(
f
0

)
+

(
0
g

)
=
∑
j

cjy
j

(
y
0

)
+
∑
i

eix
i

(
0
x

)
∈
〈(

y
0

)
,

(
0
x

)〉
so Ker

(
x y

)
⊆
〈(
y 0

)T
,
(
0 x

)T〉
. Since the generators of the right-hand side are in the kernel (because

xy = 0), we actually have equality. Thus we compute

H1(x, y) =

〈(
y 0

)T
,
(
0 x

)T〉〈(
y −x

)T〉 =

〈(
y −x

)T
,
(
0 x

)T〉〈(
y −x

)T〉 .

Hence H1(x, y) is cyclic generated by
(
0 x

)T
, so we can surject onto H1(x, y) by the following R-module

homomorphism.

R
φ // H1(x, y)

r
� // r

(
0
x

)
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Since
(
0 x

)T
/∈
〈(
y −x

)T〉
, we have H1(x, y) 6= 0 and therefore ker(φ) 6= R. On the other hand,

x, y ∈ ker(φ) by the following.

φ(x) = x

(
0
x

)
=

(
0
x2

)
=

(
−xy
x2

)
= −x

(
y
−x

)
= 0

φ(y) = y

(
0
x

)
=

(
0
xy

)
=

(
0
0

)
= 0

Therefore the ideal (x, y) is contained in the kernel of φ, which is strictly contained in the ring R. Since A
is a field, (x, y) is maximal and is therefore equal to ker(φ). Hence

H1(x, y) ∼=
R

ker(φ)
=

R

(x, y)
∼= A.

prop122917e Proposition II.G.3.10. For any R-module M , Ki(x;M) ∼= M(ni).

Proof. This is proven by induction on n. The base cases n = 0, 1, 2, 3 have already been seen in
Definition II.G.3.5 and Example II.G.3.6. Assume n ≥ 4 and the claim holds for 1, . . . , n− 1. Then we use
Definition II.F.4.3 and the induction hypothesis to get

Ki(x;M) ∼= Ki(x
′;M)⊕Ki−1(x′;M)

∼= M(n−1
i ) ⊕M(n−1

i−1)

∼= M(n−1
i )+(n−1

i−1)

= M(ni).

�

prop122917f Proposition II.G.3.11. Let M be an R-module.

prop122917f.a (a) The differential ∂
K•(x;M)
1 is the following map.

Mn

(
x1 x2 · · · xn

)
// M

prop122917f.b (b) The differential ∂
K•(x;M)
n is the following map.

M

(
xn −xn−1 · · · (−1)n−1x1

)T
// Mn

prop122917f.c (c) The homologies of the two ‘ends’ of the complex will be as follows.

H0(x;M) ∼=
M

(x)M

Hn(x;M) ∼=
n⋂
i=1

(0 :
M
xi) = {m ∈M | xim = 0, ∀i = 1, . . . , n} = (0 :

M
〈x〉)

Proof. (a) We prove this by induction on n. The base cases n = 1, 2 have already been seen in
Definition II.G.3.5 and Example II.G.3.6, so assume n ≥ 3 and that the claim holds for x′ = x1, . . . , xn−1.
By definition, the Koszul complex, K•(x;M), is the cone of

K•(x
′;M)

xn·
��

· · · // Mn−1
(x1 ··· xn−1) //

xn·In−1

��

M //

xn·

��

0

K•(x
′;M) · · · // Mn−1

(x1 ··· xn−1) // M // 0
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where In−1 is the (n − 1) × (n − 1) identity matrix. Taking the cone yields the top row of the following
diagram.

K•(x;M) = · · · //
Mn−1

⊕
M

x1 · · · xn−1 xn
0 · · · 0 0


//

∼=
��

�

M
⊕
0

//

∼=
��

0

Mn (
x1 · · · xn

) // M // 0

This proves part (a). Moreover, taking homology at the zeroth position of the bottom row (the M beneath
M ⊕ 0), the commutivity of the diagram and the isomorphisms depicted allow us to conclude

H0(x;M) ∼=
M

(x1, . . . , xn)M

which is among the claims of part (c).
(b) This is likewise proven by induction on n and the base cases n = 1, 2 have likewise already been shown.
Therefore we assume n ≥ 3 and that the claim holds for x′. Again K•(x;M) is the cone of the chain map

K•(x
′;M) =

xn·
��

0 // M
ξ //

xn·

��

Mn−1 //

xnIn−1

��

· · ·

K•(x
′;M) = 0 // M

ξ
// Mn−1 // · · ·

where ξ =
(
xn−1 −xn−2 · · · (−1)n−2x1

)T
. Taking the cone yields

0 //
0
⊕
M

0 xn
0 −ξ


//

∼=
��

M
⊕

Mn−1

//

∼=
��

· · ·

0 // M

ξ=

xn
−ξ


// Mn // · · ·

which proves the desired result. Taking homology at the nth position allows us to complete the proof of part
(c) as well:

Hn(x;M) ∼= Ker ξ =

n⋂
i=1

{m ∈M | xim = 0} = (0 :
M
〈x〉).

�

rmk010418a Remark II.G.3.12. In the context of Proposition II.G.3.11, a similar analysis shows that each differential

∂
K•(x;M)
j can be expressed as a matrix consisting entirely of zeros and ±x1, . . . ,±xn.

prop010418b Proposition II.G.3.13. For every i ∈ Z, there exists a short exact sequence

0 // Hi(x
′;M)

xn ·Hi(x′;M)
// Hi(x;M) // ( 0 : xn

Hi−1(x′;M)
) // 0.

Proof. By part (b) of Proposition II.G.3.4 and by the definitions of the mapping cone and the Koszul
complex (II.F.4.3 and II.G.3.5, respectively) it suffices to show there exists a short exact sequence of R-
complexes

0 // K•(x′;M) // K•(x;M) // ΣK•(x′;M) // 0 .

This is given by Proposition II.F.4.6, so the proof is complete. �
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The following fact is used with the preceding proposition to explain some annihilation properties of
Koszul homology modules in the subsequent proposition.

fact010418c Fact II.G.3.14. Consider the following exact sequence of R-modules.

A
α // B

β // C

If r, s ∈ R annihilate A and C, respectively, then rs ∈ R annihilates B.

Proof. Let b ∈ B be given. Since s annihilates C we have

β(sb) = sβ(b) = 0

so sb ∈ ker(β) = Imα. Let a ∈ A such that α(a) = sb and we have

rsb = rα(a) = α(ra) = α(0) = 0.

�

prop010418d Proposition II.G.3.15. In the context of Proposition II.G.3.11, for any i ∈ [n] and any j ∈ Z one has

x2n−1

i ·Hj(x;M) = 0.

Proof. This is yet another proof by induction on n. When n = 1 we have H1(x;M) = (0 :
M
x) and

H0(x;M) = M/xM by Proposition II.G.3.11(c) and Hj(x;M) = 0 for all j 6= 0, 1. Note these are indeed
annihilated by x, so the result holds for the base case.

Assume n ≥ 2 and that

x2n−2

i ·Hj(x
′;M) = 0

for any i ≤ n− 1 and any j. Let i ∈ [n] and j ∈ Z be given and consider the short exact sequence given by
Proposition II.G.3.13.

0 // Hj(x
′;M)

xn ·Hj(x′;M)
// Hj(x;M) // ( 0 : xn

Hj−1(x′;M)
) // 0

A B C

By the induction hypothesis, the two modules at the A and C positions are each annihilated by both xn
and x2n−2

i for all i ≤ n − 1. Thus Hj(x;M) is annihilated by both x2
n and x2n−1

i for all i ≤ n − 1, by
Fact II.G.3.14. �

rmk052118a Remark II.G.3.16. The conclusion of Proposition II.G.3.15 can be strengthened to say xiHj(x;M) = 0.
However, the proof of this stronger result requires technology beyond the scope of this document.

The next result leads to one of the most important properties of the Koszul complex. See Theo-
rem II.G.3.21.

thm010418e Theorem II.G.3.17. If x is M -regular, then Hi(x;M) = 0 for all non-zero i.

Proof. Another proof by induction. The base case n = 1 follows from Proposition II.G.3.11(c). Assume
n ≥ 2 and the claim holds for regular sequences of length n− 1. If x is M -regular, then by definition of the
shorter sequence x′ is M -regular as well. Therefore by the induction hypothesis Hi(x

′;M) = 0 for all i 6= 0.
Let i ≥ 1 be given and consider the short exact sequence given in Proposition II.G.3.13.

0 // Hi(x
′;M)

xn ·Hi(x′;M)
// Hi(x;M) // ( 0 : xn

Hi−1(x′;M)
) // 0

By the induction hypothesis this can be rewritten

0 // 0 // Hi(x;M) // ( 0 : xn
Hi−1(x′;M)

) // 0.

Note also that as long as i ≥ 2, by our induction hypothesis we have ( 0 : xn
Hi−1(x′;M)

) ⊆ Hi−1(x′;M) = 0, so by

Fact II.A.1.5 it suffices to show ( 0 : xn
Hi−1(x′;M)

) = 0 when i = 1. In the case when i = 1 we have

Hi−1(x′;M) = H0(x′;M) ∼= M/(x′)M



II.G.3. THE KOSZUL COMPLEX 122

by Proposition II.G.3.11. Since x is M -regular, xn is regular on M/(x′)M and is therefore not a zero-divisor
on H0(x′;M). Hence

(0 : xn
H0(x′;M)

) = 0.

�

def120217c Definition II.G.3.18. An R-module M has finite projective dimension (written pdR(M) <∞) if there
exists an exact sequence

0 // Pn // · · · // P0
// M // 0

such that P0, . . . , Pn are each projective. Given such a sequence we also write pdR(M) ≤ n; we have equality
in the case when the above is the shortest such sequence.

ex122117b Example II.G.3.19. By the above definition, an R-module M is projective if and only if its projective
dimension is zero.

ex122117c Example II.G.3.20. We claim if M is a finitely generated abelian group (i.e., a finitely generated Z-
module), then pdZ(M) ≤ 1. If M has generators m1, . . . ,mr, then by the Fundamental Theorem of Finitely
Generated Abelian Groups we write

M ∼= Zr−n ⊕Z/d1Z⊕ · · · ⊕Z/dnZ (II.G.3.20.1) eqn112618e

for some integers d1, . . . , dn. Hence one can surject onto M from the free module Zr:

Zr
τ // M // 0

where τ(ei) = mi for each standard basis vector ei. Using the isomorphism (II.G.3.20.1) we complete the
projective resolution as a short exact sequence.

0 // Zn
D // Zr

τ // M // 0

Here D can be represented as a matrix mapping generators of Zn to generators of ker(τ).

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn
0 0 · · · 0


A takeaway from this example is that the Fundamental Theorem gives us a way to build free resolutions.

thm010418f Theorem II.G.3.21. Assume x is R-regular.

thm010418f.a (a) K•(x) is a free resolution of R/(x)R over R.

thm010418f.b (b) ExtiR(R/(x)R,R/(x)R) ∼= (R/(x)R)(
n
i)

thm010418f.c (c) pdR(R/(x)R) = n

Proof. (a) Theorem II.G.3.17 tells us we have vanishing homologies for all i 6= 0 and Proposition II.G.3.11(c)
tells us H0(x) ∼= R/(x)R. It follows readily that the following augmented Koszul complex is exact.

0 // R // Rn // · · · // Rn // R
τ // R

(x)R
// 0

n n− 1 1 0 −1

Note we have incidentally shown pdR(R/(x)) ≤ n.

(b) The free resolution of R/(x)R from part (a) is a projective resolution so we consider

HomR(K•(x), R/(x)) = 0 // R∗ // (Rn)
∗ // · · · // (Rn)

∗ // R∗ // 0

0 −1 −(n− 1) −n
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which is isomorphic to

0 // R/(x) // (R/(x))
n // · · · // (R/(x))(

n
i) // · · · // (R/(x))

n // R/(x) // 0

0 −1 i −(n− 1) −n

by Hom-cancellation. Let the above complex be denoted �. The differentials of � are the transposes of the
matrices representing the differentials in the original free resolution, which are composed entirely of zeroes
and ±x1, . . . ,±xn. Hence every differential in � is a zero map and therefore

ExtiR(R/(x), R/(x)) ∼= H−i(�) ∼= (R/(x))(
n
i)

for all i.

(c) Suppose the projective dimension of R/(x) is less than n. Then there exists a projective resolution

0 // Pn−1
// Pn−2

// · · · // P0
// 0 .

Since Ext is independent of choice of resolution by Theorem II.F.5.2, this implies

0 ∼= ExtnR(R/(x), R/(x)) ∼= (R/(x))(
n
n) ∼= R/(x) 6= 0

where the non-vanishing holds since x is R-regular. Hence part (c) is proven by contradiction. �

ex122117d Example II.G.3.22. Let K be a field and let R be one of the following rings.

K[X1, . . . , Xn] K[X1, . . . , Xn](X1,...,Xn) KJX1, . . . , XnK

In any case, the sequence X = X1, . . . , Xn is R-regular and as we saw in Theorem II.G.3.21, the augmented
Koszul complex is therefore exact

0 // R // Rn // · · · // Rn // R // R/(X) // 0

n n− 1 1 0

and pdR(R/(X)) = n. This is a noteworthy example, because in general writing out projective resolutions
is very hard. In fact, even detecting finite projective dimension is difficult.

II.G.4. Additional Discussions on Ext
section062921z

In the first theorem of the section, we strengthen part of Proposition II.D.2.3, which we will subsequently
generalize in Theorem II.G.4.3. This is related to the very important Hilbert Syzygy Theorem (II.G.4.4)
and results of Auslander, Buchsbaum, and Serre (II.G.4.11), and Auslander and Bridger (II.G.4.18).

thm110817a Theorem II.G.4.1. Let R be a commutative ring with identity and let M be an R-module. The following
are equivalent.

thm110817a.i (i) M is a projective module over R.
thm110817a.ii (ii) ExtiR(M,N) = 0 for all i ≥ 1 and for all R-modules N .
thm110817a.iii (iii) Ext1

R(M,N) = 0 for all R-modules N .

Proof. It is obvious that (ii) implies (iii). The implication (i) implies (ii) is Proposition II.D.2.3(a).
The implication (iii) implies (i) follows from Theorem II.G.2.4 and Definition II.A.1.14(d). �

lem052718a Lemma II.G.4.2 (Dimension Shifting). Assume

0 // A
ε // Ln−1

dn−1 // · · · d1 // L0
τ // B // 0 (II.G.4.2.1) eqn052718a

is an exact sequence of R-modules and that Li is projective for each i = 0, . . . , n− 1. Then for all i ≥ 1 and
for any R-module X we have

Extn+i
R (B,X) ∼= ExtiR(A,X).
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Proof. Let the following be a projective resolution of A, indexed rather suggestively.

· · ·
dn+2 // Ln+1

dn+1 // Ln
π // A // 0

We can splice this with (II.G.4.2.1) to get

· · · // Ln+1

dn+1 // Ln
dn //

π
  

Ln−1

dn−1 // · · · d1 // L0
τ // B // 0

A

ε

==

""
0

>>

0

where dn = ε ◦ π. A diagram chase shows that the top row of this diagram is an augmented projective
resolution of B. Calculating Ext using this we have

Extn+i
R (B,X) =

Ker L∗n+i

d∗n+i // L∗n+i+1

Im L∗n+i−1

d∗n+i−1// L∗n+i

= ExtiR(A,X)

for any i ≥ 1. (Note that there is an alternative proof using long exact sequences associated with (II.G.4.2.1).)
�

The following theorem generalizes Theorem II.G.4.1.

thm110817c Theorem II.G.4.3. Let n ∈ N and let M be an R-module. The following are equivalent.

thm110817c.i (i) There exists an exact sequence

0 // Pn // Pn−1
// · · · // P0

// M // 0

such that each Pi is projective, i.e., pdR(M) ≤ n.
thm110817c.ii (ii) ExtiR(M,−) = 0 for all i ≥ n+ 1.
thm110817c.iii (iii) Extn+1

R (M,−) = 0.
thm110817c.iv (iv) For every augmented projective resolution of M

Q+
• = · · · // Qn+1

∂Qn+1 // Qn
∂Qn // Qn−1

// · · · // Q0
// M // 0

the module Im ∂Qn is projective. That is, the augmented resolution above can be “softly truncated” to
form a new projective resolution, written below.

0 // Im ∂Qn
⊆ // Qn−1

// · · · // Q0
// M // 0

Proof. Showing (iv) implies (i) and showing (ii) implies (iii) are each trivial, and (i) implies (ii) follows
from Note II.B.1.7. So we will endeavor only to show that (iii) implies (iv). Assume (iii) holds and let Q+

•
be an augmented projective resolution of M . By Lemma II.G.4.2 and our assumption we have

0 = Extn+1
R (M,N) ∼= Ext1

R

(
Im ∂Qn , N

)
for all R-modules N . Therefore Im ∂Qn is projective by Theorem II.G.4.1. �

The next result gives some rings over which all modules have finite projective dimension. Its proof is
outside the scope of this document. See the subsequent example for rings that have modules of infinite
projective dimension.

thm112617d Theorem II.G.4.4 (Hilbert Syzygy Theorem). Let R = K[x1, . . . , xd] where K is a field, let M be an
R-module, and let P+

• be an augmented projective resolution of M . Under these assumptions Im ∂Pd is
projective. This is called a dth syzygy of M . If R = Z[x1, . . . , xd], then Im ∂Pd+1 is projective. If we localize
either of these two rings, then the respective conclusions still hold.
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ex112617e Example II.G.4.5. Define the following two rings.

R1 =
K[x]

(x2)
R2 =

K[x, y]

(xy)

The rings R1 and R2 are not integral domains, so they are not (localizations of) polynomial rings over fields
(and the hypotheses of Theorem II.G.4.4 are therefore not satisfied). It is a fact (beyond the scope of this
document) that if M1 is an R1-module and not free, then given a projective resolution P• of M1, the module
Im ∂Pn is never projective.

For example, consider the module

K =
R1

xR1

for which we construct an augmented projective resolution.

0

""

0

xR1

<<

!!
P+
• = · · · // R1

x· // R1

==

x· // R1
x· //

!!

R1
τ // K // 0

xR1

==

""
0

<<

0

The map τ is the natural surjection and we can observe immediately that at no point does this resolution
terminate, which is a result of the fact that Imx· = xR1 is not projective. Indeed if xR1 were free, then
AnnR(xR1) = {0}, but 0 6= x ∈ AnnR(xR1) since x2 = 0 implies x ·xR1 = 0. Moreover, xR1 is not projective
by Corollary II.C.4.18, because R1 is local. Hence xR1 = Im ∂P1 = Im ∂Pn is not projective, for all n ≥ 1.

Let us justify our claim that R1 is not local. Recall the prime correspondence under quotients.

{p ∈ Spec(R1)} // {
p ∈ Spec(K[x])

∣∣ x2 ∈ p
}

oo

={p ∈ Spec(K[x]) | x ∈ p}

={p ∈ Spec(K[x]) | (x) ⊆ p}

Since (x) is maximal in K[x], there is only one ideal on the right and therefore only one ideal on the left, so
R1 is local.

It follows that for all n ∈ Z, there exists some R-module Nn such that ExtnR1
(K,Nn) is non-zero. In

fact, for any n we may set Nn = K. Consider HomR1
(P•,K) below.

0 // HomR1(R1,K)
x·∗ // HomR1(R1,K)

x·∗ // HomR1(R1,K)
x·∗ // · · ·

By Hom-cancellation this is isomorphic to the following.

0 // K
x·
=0
// K

x·
=0
// K

x·
=0
// · · ·

Therefore we may compute Ext for any n ≥ 1.

ExtnR1
(K,K) =

Ker K
0 // K

Im K
0 // K

=
K

0
∼= K 6= 0
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Now let us play with R2, defining the modules K = R2/(x, y)R2 and M = R2/xR2
∼= K[y]. Constructing

an augmented projective resolution P+
• of M , we observe a periodic behavior.

0

""

0

yR2

!!

<<

· · ·
y // R2

x //

x
!!

R2

y
==

y
// R2

x
!!

x // R2
// M // 0

xR2

==

""

xR2

==

""
0

<<

0 0

<<

0

We may also construct an augmented projective resolution Q+
• of K that exhibits a similar periodic behavior,

but not immediately.

· · ·

x 0
0 y


// R2

2

y 0
0 x


// R2

2

x 0
0 y


// R2

2

y 0
0 x


// R2

2

##

(
x y

)
// R2

// K // 0

(x, y)R2

;;

##
0

;;

0

As above, we know

ExtnR2
(M,K) 6= 0 6= ExtnR2

(K,K).

Applying the HomR2(−,M) functor to P•, we compute ExtnR2
(M,M) precisely. Skipping over the Hom-

cancellation step we have

HomR2(P•,M) = 0 // M
x·
=0
// M

y·

6=0
// M

x·
=0
// M

y·

6=0
// · · ·

so we compute as follows.

Ext0
R2

(M,M) =
Ker M

x· // M

Im 0 // M
=
M

0
∼= M

∀n ≥ 1 Ext2n−1
R2

(M,M) = Ext1
R2

(M,M) =
Ker M

y· // M

Im M
x· // M

=
0

0
= 0

∀n ≥ 1 Ext2n
R2

(M,M) = Ext2
R2

(M,M) =
Ker M

x· // M

Im M
y· // M

=
M

yM
∼=

K[y]

yK[y]
∼= K

It is natural to ask whether one can say anything nice (as in Theorem II.G.4.3(iv)) about the image
modules occurring in the resolutions from Example II.G.4.5. In fact, we can, using the following notion; see
Theorem II.G.4.8.

def120117a Definition II.G.4.6. An R-module G is totally reflexive if
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(a) G is finitely generated and the map

δGR : G
∼= // HomR(HomR(G,R), R)

g
� // Ψg

is an R-module isomorphism, where

Ψg : HomR(G,R) // R

ψ � // ψ(g).

(b) For all i ≥ 1 we have
ExtiR(G,R) = 0 = ExtiR(HomR(G,R), R).

Using the notation (−)∗ := HomR(−, R) we may write more succinctly

(a) G is finitely generated and δGR : G
∼= // G∗∗ .

(b) ExtiR(G,R) = 0 = ExtiR(G∗, R) for all i ≥ 1.

ex111218a Example II.G.4.7. Let n ∈ N. The finitely generated free module Rn is totally reflexive as is any
finitely generated projective R-module.

thm120217b Theorem II.G.4.8 (Auslander-Bridger). Let K be a field. If R is either of the two rings

K[x0, . . . , xd]/(f) Z[x1, . . . , xd]/(f)

(where f is a non-zero, non-unit polynomial) or a localization of either of these, then there exists an exact
sequence

0 // Gd // · · · // G1
// G0

// M // 0

such that G0, . . . , Gd are each totally reflexive. Moreover for every projective resolution P• of M such that
each Pi is finitely generated, the module Im ∂Pd is totally reflexive. Therefore the sequence

0 // Im ∂Pd
// Pd−1

// · · · // P0
// M // 0

is exact and P0, . . . , Pd−1, Im ∂Pd are all totally reflexive.

Now we return to projective dimension.

fact120217f Fact II.G.4.9. For any local noetherian ring (R,m), the number of generators of m is no smaller than
the Krull dimension of R,

dim(R) = sup {n ∈ N | ∃p0 ( p1 ( · · · ( pn in Spec(R)} .

Next we restate part of Definition II.B.3.4 and give a more complete version of Theorem II.B.3.8.

def120217e Definition II.G.4.10. A local noetherian ring (R,m) is regular if the number of generators of m is equal
to the Krull dimension of R.

thm120217g Theorem II.G.4.11 (Auslander, Buchsbaum, Serre). Let (R,m, k) be a noetherian local ring. The fol-
lowing are equivalent.

(i) R is regular.
(ii) pdR(M) <∞ for all R-modules M .
(iii) pdR(k) <∞.
(iv) pdR(k) = dim(R), i.e., the finite projective dimension is equivalent to the Krull dimension.
(v) pdR(M) ≤ dim(R) for all R-modules M .

(vi) Extd+1
R (M,−) = 0 for all R-modules M , where d = dim(R).

(vii) For every R-module M and for every projective resolution Q• of M , Im ∂Qd is projective, where d =
dim(R).

While R is always projective as an R-module (in fact, Rn is projective for all n ≥ 1), R is rarely injective
as an R-module (defined in II.A.1.15), as we see next.

thm120417b Theorem II.G.4.12. Assume R is noetherian and that R is either local or an integral domain. If R
has a non-zero, finitely generated injective module, then R is artinian. That is, R satisfies the following
equivalent conditions.
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(i) R satisfies the descending chain condition on ideals.
(ii) R is a noetherian ring with Krull dimension zero.
(iii) R is a noetherian ring and every prime ideal is maximal.

ex120417c Example II.G.4.13. If R is any field, then the only two ideals are R and 0, implying each of the following
also hold.

(a) R satisfies both the ascending and descending chain conditions on ideals (the only non-trivial chain of
ideals is 0 ( R).

(b) The sole prime ideal of R is the zero ideal, so the Krull dimension of R is 0.
(c) Every R-module is a free module (i.e., of the form R(Λ)) and therefore all R-modules are both injective

and projective.

ex120417d Example II.G.4.14. Consider the ring of integers R = Z, for which the ascending chain condition holds,
but for which the descending chain condition fails. Ti see why the ascending chain condition holds, consider
an arbitrary ascending chain of ideals.

n1Z ⊆ n2Z ⊆ n3Z ⊆ . . .

The integer n1 has a finite list of prime factors. In order for the chain above to be one of proper containments,
one must remove at least one prime factor from the list at each step. Since the list is finite, the chain has to
stabilize.

We can confirm the descending chain condition fails by giving the following example.

Z ) 10Z ) 20Z ) 40Z ) · · · ) 10 · 2kZ ) · · ·

We can also confirm that Z is not injective as a Z-module, which we do by showing HomZ(−,Z) is not
exact. Consider the short exact sequence

0 // Z
13· // Z // Z/13Z // 0 (II.G.4.14.1) eqn111218b

and apply HomZ(−,Z).

0 // HomZ(Z/13Z,Z) // HomZ(Z,Z)
13· // HomZ(Z,Z) // 0 (II.G.4.14.2) eqn052218b

By Hom-cancellation the labeled map above can be written

Z
� � 13· // Z .

Since the multiplication map is not onto, (II.G.4.14.2) is not exact.
Alternatively, our short exact sequence (II.G.4.14.1) is also an augmented projective resolution for the

Z-module Z/13Z, yielding the sequences

P• = 0 // Z
13· // Z // 0

HomZ(P•,Z) ∼= 0 // Z
13· // Z // 0

by Hom-cancellation. We calculate Ext1
Z(Z/13Z,Z) below.

Ext1
Z(Z/13Z,Z) =

Ker Z // 0

Im Z
13· // Z

=
Z

13Z
6= 0

If Z were injective, then for an arbitrary Z-module M , ExtiZ(M,Z) = 0 for all i ≥ 1 (Definition II.A.1.15
part (d)). Since this has just been shown not to be the case, Z is not injective as a Z-module.

rmk120417e Remark II.G.4.15. A similar result as in the previous example can be obtained for any integral domain
that is not a field, as the construction requires only that we have a ring R with a non-zero-divisor. In general
R is not injective as an R-module. Moreover, in general there does not exist an exact sequence

0 // R // I0 // I1 // · · · // In // 0

such that I0, . . . , In are injective. This prompts the following definition.
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def120417f Definition II.G.4.16. A noetherian ring R is Gorenstein if there exists an exact sequence

0 // R // I0 // I1 // · · · // In // 0

such that I0, . . . , In are injective, i.e., R has finite injective dimension and we write idR(R) <∞.

ex120417g Example II.G.4.17. Each of the following rings are Gorenstein.

K[x0, . . . , xn]

(f)

Z[x1, . . . , xn]

(f)

In Theorem II.G.4.11 we see that given a regular local ring R, one can take any R-module M along with
any projective resolution P• of M , and it follows that the kernel of every differential past the dth spot will
be projective, where d = dim(M). What if the ring is only Gorenstein? The answer comes in the next result
by Auslander and Bridger. Compare it to Theorem II.G.4.8 with Example II.G.4.17 in mind.

thm120417h Theorem II.G.4.18 (Auslander-Bridger). If (R,m, k) is a local noetherian ring, then the following are
equivalent.

(i) R is a Gorenstein ring.
(ii) For every finitely generated R-module M , there exists an exact sequence

0 // Gn // Gn−1
// · · · // G0

// M // 0

such that G0, . . . , Gn are all totally reflexive.
(iii) For every finitely generated R-module M and for every projective resolution P• where each Pi is finitely

generated, the module Im ∂Pd is totally reflexive.
(iv) There exists an exact sequence

0 // Gd // Gd−1
// · · · // G0

// k // 0

such that G0, . . . , Gd are totally reflexive and where d = dim(R) is the Krull dimension of R.
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Introduction
section063021a

This part will be broken into three chapters and we outline them here.

The reader will be familiar with the notion of using small amounts of summary data to gain insight into
sometimes exceedingly complicated mathematical objects. For the statistician, one uses measures of center
and spread, for instance, to understand immense data sets. In graduate-level abstract algebra, students are
exposed to the Sylow Theorems, whereby significant structural information is gleaned from knowing only
the order of a finite group. We know that one way to determine two groups G and H are not isomorphic is
to show their respective orders are different, however, we also know that merely knowing |G| = |H| does not
imply G ∼= H. So tools like the Sylow Theorems are powerful, yet are quite limited. In this course we are
interested in similar tools that allow us to understand rings and modules.

In general, throughout the course we will use the following notation. We let k be a field and let
R = k[X1, . . . , Xd] be the polynomial ring in d variables with coefficients in k. We will write I ≤ R to denote
an ideal I of the ring R. We want to understand the quotient ring S = R/I and one of the aforementioned
tools for doing so is free resolutions, the existence of which will be explored in Chapter III.A, along with
Hilbert’s Syzygy Theorem, presented below.

hilbert0 Theorem 1 (Hilbert’s Syzygy Theorem). Let k be a field and R = k[X1, . . . , Xd] the polynomial ring
in d variables.

hilbert0.a (a) If I ≤ R is I = 〈f1, . . . , fβ1〉 where fi is a polynomial in R for i = 1, . . . , β1, then there exists an exact
sequence

0 // Rβd
∂d // · · · ∂3 // Rβ2

∂2 // Rβ1
∂1(

f1 · · · fβ1

) // R
τ // R/I // 0.

d+ 1 d 2 1 0

This is an augmented free resolution of R/I over R. The free resolution omits the module R/I. The maps
∂i are the differentials in the resolution and the (homological) degree of each module in the resolution is
given beneath it. It is common to write simply ∂ when the degree is understood.

hilbert0.b (b) If fi is homogeneous for i = 1, . . . , d, then this resolution can be built minimally and the βj’s are
independent of the choice of minimal free resolution. The integer

βj = βRj (R/I)

is the jth Betti number of R/I over R. This notion is originally from algebraic topology where it was
named after Enrico Betti by Poincaré and modernized by Emmy Noether.

It should be noted that part (a) of the theorem guarantees the sequence will vanish beyond (homological)
degree d, but it is not necessarily the case that Rβi 6= 0 for i = 1, . . . , d. An application of the theorem is as
follows, and it resembles our finite group example above. If J ≤ R is another ideal generated by polynomials
in R and βRj (R/I) 6= βRj (R/J) for some j, then R/I 6∼= R/J . However, if βRj (R/I) = βRj (R/J) for all j, then
R/I may or may not be isomorphic to R/J .

Chapter III.B of the course will be spent exploring examples of free resolutions, including the Koszul
complex named after J. L. Koszul, which we partially present here.

koszul0 Example 2 (Koszul Complex). Let R = k[X1, . . . , Xd] and let {i1, . . . , iβ1
} be a subset of {1, . . . , d}.

Then let I =
〈
Xi1 , . . . , Xiβ1

〉
≤ R be an ideal of R and we have the following free resolution.

0 // R(β1
β1

) ∂β1 // · · · ∂4 // R(β1
3 ) ∂3 // R(β1

2 ) ∂2 // R(β1
1 ) ∂1(

Xi1 · · · Xiβ1

) // R // 0

So the Betti numbers

βRj (R/I) =

(
β1

j

)
are independent of the list {i1, . . . , iβ1}. This demonstrates that if I and J are ideals of R with equivalent
Betti numbers βRj (R/I) = βRj (R/J), then we need not have R/J ∼= R/I.
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In Chapter III.C of this course we will explore the theory of differential graded algebra (DGA) resolutions,
as well as examples and applications of such resolutions. The Koszul complex is one such DGA resolution,
as it admits a unital ring structure in the following way.

dga0 Example 3. Consider the ideal I = 〈X1, X2, X3〉 ≤ R = k[X1, . . . , Xd]. Then the Koszul complex as
seen in the previous example is

0 // R
∂3 // R3 ∂2 // R3 ∂1(

X1 X2 X3

) // R // 0

e123 e12 e1 1

e13 e2

e23 e3

where we have denoted the basis elements below each R-module. We see that ∂1(ei) = Xi for i = 1, 2, 3 and
we also have the following.

∂2(e12) = X1e2 −X2e1 ∂3(e123) = X1e23 −X2e13 +X3e12

∂2(e13) = X1e3 −X3e1

∂2(e23) = X2e3 −X3e2

In general we have

∂m(ei1···im) =

m∑
j=1

(−1)j−1Xijei1···̂ij ···im

where i1 · · · îj · · · im denotes the ordered list i1 · · · im with ij omitted. This determines an R-linear map by
respecting linear combinations of basis vectors with coefficients in R (this is the UMP for free modules). The
multiplication goes as follows.

e1e2 = e12 e1e12 = 0

e1e1 = 0 e2e13 = −e123

e2e1 = −e1e2 = −e12

This so-called “wedge product” is unital, associative and graded commutative, i.e.,

eAeB = (−1)|A|·|B|eBeA

where A,B ⊆ {1, 2, . . . ,m}, and |A| and |B| denote the homological degrees of eA and eB , respectively. The
differentials and multiplication also satisfy the Leibniz rule:

∂|A|+|B|(eAeB) = ∂|A|(eA)eB + (−1)|A|eA∂|B|(eB).

For instance, we have

∂2(e1e2) = ∂2(e12) = X1e2 −X2e1
†
= ∂1(e1)e2 + (−1)1e1∂1(e2)

where † holds since degree-zero elements commute.



CHAPTER III.A

Homological Algebra

chapter072921a
III.A.1. Linear Algebra

section063021b
Throughout the chapter, we will assume R is a commutative ring with identity, unless stated otherwise.

def190827a Definition III.A.1.1. Let M be an R-module.

(a) A sequence e1, . . . , en ∈ M is a finite basis for M if it generates M as an R-module and it is linearly
independent over R, i.e., for every m ∈M there exist unique r1, . . . , rn ∈ R such that m =

∑n
i=1 riei.

(b) M is a finite rank free R-module if it has a finite basis.

ex190827b Example III.A.1.2. (a) We define Rn to be the R-module whose elements are column vectors of size n
with entries in R, i.e.,

Rn =


r1

...
rn


∣∣∣∣∣∣∣ r1, . . . , rn ∈ R

 .

This is a finite rank free R-module with standard basis e1, . . . , en where ei = (δij)j and δij is the
Kronecker delta.

(b) If 0 6= I � R, then R/I is not free, because it fails linear independence over R in the following way. If
0 6= r ∈ I (which exists since I 6= 0), then for every s ∈ R \ I we have 0 6= s = s+ I ∈ R/I and rs ∈ I,
which implies rs = 0 ∈ R/I. Therefore r · s = rs = 0 and we have thus exhibited a linear combination
which sums to zero, but has a non-zero coefficient.

fact190827c.afact190827c Fact III.A.1.3. (a) (Universal Mapping Property) Let F be
a free R-module with basis e1, . . . , en ∈ F . For every R-
module M and any collection of elements m1, . . . ,mn ∈
M , there exists a unique R-module homomorphism
φ : F →M such that φ(ei) = mi for i = 1, . . . , n.

fact190827c.b (b) If F and G are finite rank free R-modules with bases
e1, . . . , en and f1, . . . , fn, respectively, then F ∼= G as
R-modules.

fact190827c.c (c) If F is a finite rank free R-module with basis e1, . . . , en,
then F ∼= Rn as R-modules.

{e1, . . . , en}
⊆ //

##

F

∃!

��

∑
i riei_

��

ei 


$$
mi M

∑
i rimi

Proof. Part (a) is standard. We prove part (b) and then part (c) will follow as a corollary. Since F and
G are free, by the universal mapping property we have R-module homomorphisms φ : F → G and ψ : G→ F
such that φ(ei) = fi and ψ(fi) = ei for i = 1, . . . , n.

{e1, . . . , en}
⊆ //

%%

F

φ

��

{f1, . . . , fn}
⊆ //

%%

G

ψ

��
G F

Since the composition ψ ◦φ is a homomorphism from F to F and idF is likewise a homomorphism from F to
F , by the uniqueness given in the universal mapping property we have ψ ◦ φ = idF . By the same reasoning
we know φ ◦ ψ = idG and we conclude both φ and ψ are isomorphisms, i.e., F ∼= G.

{e1, . . . , en}
⊆ //

%%

F

ψ◦φ
��

idF

��

{f1, . . . , fn}
⊆ //

%%

G

φ◦ψ
��

idG

��
F G

133
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�

notn190827d Notation III.A.1.4. Let φ : Rn → Rm be R-linear. We represent φ by a matrix A where the jth column
of A consists of the coefficients needed to represent φ(ej). That is, if e1, . . . , en ∈ Rn and f1, . . . , fm ∈ Rm
form the standard bases, then we let A = (aij) where

φ(ej) =

m∑
i=1

aijfi

for j = 1, . . . , n. This partially justifies the following:

HomR(Rn, Rm) ∼= Matm×n(R) ∼= Rmn.

fact190827e Fact III.A.1.5. An R-module M is finitely generated over R if and only if there exists an R-module
epimorphism (surjective homomorphism) τ : Rn → M for some n ∈ N, in which case M is generated by
τ(e1), . . . , τ(en) ∈M .

thm190827f Theorem III.A.1.6. The following are equivalent.

(i) Every ideal of R is finitely generated.
(ii) R satisfies the ascending chain condition for ideals, i.e., for every chain of ideals I0 ⊆ I1 ⊆ I2 ⊆ . . . ,

there exists an integer N ∈ N such that IN = IN+1 = IN+2 = . . . .
(iii) R satisfies the maximum condition for ideals, i.e., every non-empty set of ideals of R contains a maximal

element with respect to containment.
(iv) For every n ∈ N, every submodule of Rn is finitely generated.
(v) For every n ∈ N, Rn satisfies the ascending chain condition for submodules.

(vi) For every n ∈ N, Rn satisfies the maximum condition for submodules.

def190827g Definition III.A.1.7. R is noetherian if it satisfies the equivalent conditions of Theorem III.A.1.6.

fact190827h Fact III.A.1.8. (a) (Hilbert’s Basis Theorem) If R is noetherian, then R[X] is noetherian.
(b) If R is noetherian, then for every n ∈ N and for every ideal I ≤ R[X1, . . . , Xn], the quotient ring

R[X1, . . . , Xn]/I is noetherian.
(c) If k is a field, then k is noetherian and by Hilbert’s Basis Theorem, k[X1, . . . , Xn] is noetherian as well

for every n ∈ N.

III.A.2. Exact Sequences
section063021c

def190827i Definition III.A.2.1. (a) A sequence A
α // B

β // C of R-module homomorphisms is exact if
Imα = Kerβ.

(b) A sequence

· · ·
fi+2 // Ai+1

fi+1 // Ai
fi // Ai−1

fi−1 // · · ·

is exact if Im fi+1 = Ker fi for all i ∈ Z.
(c) A short exact sequence is an exact sequence of the form

0 // A // B // C // 0.

fact190827j Fact III.A.2.2. (a) 0 // A
α // B is exact if and only if α is injective.

(b) B
β // C // 0 is exact if and only if β is surjective.

fact190827j.c (c) 0 // A // 0 is exact if and only if A = 0.

fact190827j.d (d) 0 // A
α // B // 0 is exact if and only if α is an isomorphism.

thm190827k Theorem III.A.2.3. If R is noetherian and M is a finitely generated R-module, then there exists an
exact sequence

· · ·
∂i+1 // Rβi

∂i // · · · ∂2 // Rβ1
∂1 // Rβ0

τ // M // 0.

Proof. Since M is assumed to be finitely generated, by Fact III.A.1.5 the exists an integer β0 ∈ N and
an epimorphism τ : Rβ0 →M . Since Ker τ is a submodule of Rβ0 and R is noetherian, by Theorem III.A.1.6
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and Fact III.A.1.5 there exists an integer β1 ∈ N and epimorphism τ1 : Rβ2 → Ker τ . This procedure
continues and yields the following commutative diagram of short exact diagonal sequences.

0

!!

0 0

  

0

Ker τ2

==

ι2

⊆ !!
�

Ker τ

>>

ι0

⊆   
�

0

· · · // Rβ3

τ3
==

∂3=ι2τ3

// Rβ2
∂2=ι1τ2 //

τ2
!!

Rβ1

τ1

>>

∂1=ι0τ1

// Rβ0
τ //

τ
��

M

CC

// 0

Ker τ1

ι1

⊆
==

!!

�

M

idM

BB

��

�

0

==

0 0

@@

0

A diagram chase shows the horizontal sequence is exact. �

def190827l Definition III.A.2.4. The exact sequence in Theorem III.A.2.3 is an augmented free resolution of M .

rmk190827m Remark III.A.2.5. In general, these are difficult to compute. Thus, the following examples are partic-
ularly nice. A main point of this course is to construct other examples explicitly.

ex190827n Example III.A.2.6. We give three examples of free resolutions.

(a) From the fundamental theorem of finitely generated abelian groups, if G is a finitely generated abelian
group, there exist positive integers d1, . . . , dn, r ∈ N such that

G ∼=
Z

(d1)
⊕ · · · ⊕ Z

(dn)
⊕Zr.

The following is an augmented free resolution of G (as a Z-module).

0 // Zn 
d1 0

. . .

0 dn
0



// Zn+r // G // 0

(b) If R is an integral domain and 0 6= r ∈ R \ R×, then the following is an augmented free resolution of
R/(r).

0 // R
r· //

!!

R // R

(r)
// 0

(r)

$$

==

0

::

0
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(c) These resolutions need not be finite. Consider the ring R = k[X,Y ]/(XY ) and the R-module M =
R/(X). Then we have the following augmented free resolution of M .

0

$$

0

(
X
)

!!

::

· · · X· // R
Y · // R

X·
//

==

R
Y · //

!!

R // R(
X
) // 0

(
Y
)

$$

==

0

::

0

One can find a similar resolution when R = k[X]/(X2) and M = R/
(
X
)
.

hilbert Theorem III.A.2.7 (Hilbert’s Syzygy Theorem). Let R = k[X1, . . . , Xd] where k is a field and let M be
a finitely generated R-module. Then there exists a free resolution

0 // Rβd // · · · // Rβ1 // Rβ0 // M // 0

with βi ≥ 0 for i = 0, . . . , d. (One can replace k with a principal ideal domain and the conclusion holds if
one also replaces d with d+ 1 in the above sequence.)

rmk190827o Remark III.A.2.8. (a) If d = 0, then R is a field and M ∼= Rβ0 , so we have the augmented free
resolution

0 // Rβ0 // M // 0.

(b) If d = 1, then R is a principal ideal domain and we can construct the following augmented free
resolution.

0

��
0 // Rβ1 //

∼=
!!

Rβ0
τ // M // 0

Ker τ

==

!!
0

==

0

Here we use the assumptions that Ker τ is a submodule of Rβ0 and R is a principal ideal domain
to conclude that Ker τ ∼= Rβ1 for some β1 ≤ β0.

The following results were given as exercises. For each exercise we consider the following sequence of
R-modules and R-module homomorphisms.

A = · · ·
∂Ai+1 // Ai

∂Ai // · · ·

Assume that each R-module Ai is free with finite basis Bi.

exr190829a Exercise III.A.2.9. Fix an integer i. If ∂Ai−1

(
∂Ai (b)

)
= 0 for all b ∈ Bi, then we have ∂Ai−1∂

A
i = 0.
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Proof. Set {b1, . . . , br} = Bi. By assumption, the following diagram commutes for each of the vertical
maps.

{b1, . . . , br}
⊆ //

0 %%

Ai

0

��
∂Ai−1◦∂

A
i

��
Ai−2

Therefore by the uniqueness given in the Universal Mapping Property (Fact III.A.1.3) we have ∂Ai−1 ◦ ∂Ai =
0. �

exr190829b Exercise III.A.2.10. Fix integers i and j, and let f : Bi × Bj → Ai+j be a function. Then there is a
unique well-defined R-bilinear map µi,j : Ai × Aj → Ai+j such that µi,j(b, b

′) = f(b, b′) for all b ∈ Bi and
b′ ∈ Bj .

Proof. We define µi,j the only way we can, because of the requirement of bilinearity.

µi,j

∑
b∈Bi

rbb ,
∑
b′∈Bj

sb′b
′

 :=
∑
b∈Bi

∑
b′∈Bj

rbsb′ · f(b, b′)

Well-definedness follows readily from the linear independence of Bi and of Bj . If we suppose that ρ is another
R-bilinear map satisfying ρ(b, b′) = f(b, b′) for all b ∈ Bi and all b′ ∈ Bj , then we have

ρ

∑
b∈Bi

rbb ,
∑
b′∈Bj

sb′b
′

 =
∑
b∈Bi

∑
b′∈Bj

rbsb′ρ(b, b′) =
∑
b∈Bi

∑
b′∈Bj

rbsb′f(b, b′) = µi,j

∑
b∈Bi

rbb ,
∑
b′∈Bj

sb′b
′

 ,

so µi,j is unique. �

exr190829c Exercise III.A.2.11. Fix integers i and j, and let µi,j : Ai × Aj → Ai+j be an R-bilinear map. For all
a ∈ Ai and a′ ∈ Aj , set aa′ = µi,j(a, a

′).

(a) If i = 0 and there exists and element 1 ∈ A0 such that 1b′ = b′ for all b′ ∈ Bj , then 1a′ = a′ for all
a′ ∈ Aj .

(b) If bb′ = (−1)ijb′b for all b ∈ Bi and b′ ∈ Bj , then aa′ = (−1)ija′a for all a ∈ Ai and a′ ∈ Aj .
(c) If b(b′ + b′′) = bb′ + bb′′ for all b ∈ Bi and b′, b′′ ∈ Bj (with the standard order of operations), then

a(a′ + a′′) = aa′ + aa′′ for all a ∈ Ai and a′, a′′ ∈ Aj .

exr190829d Exercise III.A.2.12. For all integers i and j, let µi,j : Ai × Aj → Ai+j be an R-bilinear map. For all
a ∈ Ai and a′ ∈ Aj , set aa′ = µi,j(a, a

′). Fix integers i, j, and k. If we have b(b′b′′) = (bb′)b′′ for all b ∈ Bi,
b′ ∈ Bj , and b′′ ∈ Bk, then a(a′a′′) = (aa′)a′′ for all a ∈ Ai, a′ ∈ Aj , and a′′ ∈ Ak.

III.A.3. Graded Resolutions
section063021d

In this chapter we are interested in being able to keep track of finer information about certain resolutions.

ass190903a Assumption III.A.3.1. In this chapter, assume k is a field and that R = k[X1, . . . , Xd] is the polynomial
ring in d variables with the standard grading, i.e., degXi = 1 for all i.

def190903b Definition III.A.3.2. A homogeneous (or graded) ideal in R is an ideal generated by homogeneous
polynomials (not necessarily of the same degree).

ex190903c Example III.A.3.3. Let R = k[X,Y ] and consider the ideal I =
〈
X2, XY 2

〉
. Since X2 and XY 2

are each homogeneous, I is a homogeneous ideal. Note that X2 − XY 2 is not homogeneous, yet we have
I =

〈
X2 −XY 2, XY 2

〉
, so the existence of a non-homogeneous generator in the representation of an ideal

does not imply the ideal is not graded.

hilbertgraded Theorem III.A.3.4 (Hilbert’s Syzygy Theorem (graded version)). If I = 〈f1, . . . , fβ1
〉 such that each fi

is homogeneous, then there exists an (augmented) free resolution

0 // Rβd // · · · // Rβ1 // R // R/I // 0

such that each differential in the resolution is represented by a matrix of homogeneous polynomials.
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ex190903d Example III.A.3.5. Let R = k[X,Y ] and consider the ideals I1 = 〈X,Y 〉, I2 =
〈
Xa, Y b

〉
, and J =〈

Xa, XY, Y b
〉
. In the case of I2 we assume a, b ≥ 1 and in the case of J we assume a, b ≥ 2. Then we claim

the following are respective free resolutions of R/I1, R/I2, and R/J .

0 // R

−Y
X


// R2

(
X Y

)
// R // R

I1
// 0

0 // R

−Y b
Xa


∂I2

// R2

(
Xa Y b

)
∂I1

// R // R

I2
// 0

0 // R2


−Y 0
Xa−1 −Y b−1

0 X


∂J2

// R3

(
Xa XY Y b

)
∂J1

// R // R

J
// 0

Since the first diagram is just a special case of the second, we need only justify the exactness of the resolutions
of R/I2 and R/J . The exactness at the (homological) degree -1 and 0 positions are by construction. The
exactness at the degree 2 position in the second resolution follows from the fact that R is an integral domain
and ∂I2 amounts to the standard scalar multiplication of (−Y b Xa)T by elements r ∈ R. Also for the second
resolution, argue as we do for the third resolution to show that one also has exactness at the degree 1
position.

To show the third resolution is exact at the degree 1 position, we will show Ker ∂J1 = Im ∂J2 , i.e.,

Ker ∂J1 =

〈 −YXa−1

0

 ,

 0
−Y b−1

X

〉 .
The proof of the reverse containment is short.

(
Xa XY Y b

)
·

 −YXa−1

0

 = 0
(
Xa XY Y b

)
·

 0
−Y b−1

X

 = 0

For the forward containment, let (f g h)T ∈ Ker ∂J1 and note this implies

Xaf +XY g + Y bh = 0. (III.A.3.5.1) eqn190903a

Since X|Xaf and X|XY g, it follows that X|Y bh and therefore X|h. Let h′ ∈ R such that h = Xh′. By
similar reasoning, we let f ′ ∈ R such that f = Y f ′. Hence (III.A.3.5.1) becomes

0 = XaY f ′ +XY g + Y bXh′ = XY (Xa−1f ′ + g + Y b−1h′).

Since we are working in an integral domain, this implies Xa−1f ′ + g + Y b−1h′ = 0 and therefore g =
−Xa−1f ′ − Y b−1h′. Hence we conclude our argument as follows.fg

h

 =

 Y f ′

−Xa−1f ′ − Y b−1h′

Xh′

 = f ′

 Y
−Xa−1

0

+ h′

 0
−Y b−1

X


To see that the resolution of R/J is exact in the degree 2 position (i.e., that ∂J2 is injective), let

(c d)T ∈ Ker ∂J2 and observe that

0 = c

 −YXa−1

0

+ d

 0
−Y b−1

X


implies dX = 0 and cY = 0, so c = 0 = d.
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As an aside, we point out that if one deletes one row of the matrix representing ∂J2 and takes the
determinant of the resulting matrix, then one obtains the entries of (Xa XY Y b), up to a sign. This is a
special case of the Hilbert-Burch Theorem, which we discuss in Chapter III.B.

rmk190903e Remark III.A.3.6. Notice the resolutions in Example III.A.3.5 are all of the form

0 // Rb2 // Rb1 // Rb0 // 0

and their exponents all satisfy b0 − b1 + b2 = 0. This leads us to the following exercise and theorem.

exr190903f Exercise III.A.3.7. Let K be a field and consider the following exact sequence of K-vector spaces.

0 // Kβd // · · · // Kβ0 // 0

Then
d∑
i=0

(−1)iβi = 0.

thm190903g Theorem III.A.3.8. Let I ≤ R be a non-zero ideal and let

0 // Rβd // · · · // Rβ0 // R/I // 0

be an exact sequence. Then
d∑
i=0

(−1)iβi = 0.

Proof. Let 0 = p � R, which is a prime ideal and let K = Rp = k(X1, . . . , Xd) be the field of fractions
of R (i.e., localize at p). Then for any 0 6= s ∈ I and any r/t ∈ (R/I)p, we have

r

t
=
sr

st
=

0

st
= 0,

so (R/I)p = 0. We can localize the given resolution to obtain the following resolution.

0 // Rβdp //

||

· · · // Rβ0
p

//

||

(R/I)p

||

// 0

Kβd Kβ0 0

Thus the desired conclusion follows from Exercise III.A.3.7. �

notn190905a Notation III.A.3.9. Let n ∈ N and set

Rn = {homogeneous polynomials in R of degree n} ∪ {0}.

rmk190905b Remark III.A.3.10. Rn ⊂ R is a k-subspace, but is not an ideal unless d = 0.

myhousemyrules Notation III.A.3.11. Let m ∈ Z. We say R(−m) is a “shifted” or “twisted” copy of R. It has
R(−m) = R as an R-module, but if f ∈ R is homogeneous, then

degR(−m)(f) = degR(f) +m,

i.e.,

R(−m)n = Rn−m.

For instance, 1 ∈ k = R0 = R(−m)m. It follows that R(−m) is a free R-module with basis {1} such that
degR(−m)(1) = m. More generally we have that

F =

r⊕
i=1

R(−mi)

is a graded free R-module of rank r for m1, . . . ,mr ∈ Z and

Fn =

(
r⊕
i=1

R(−mi)

)
n

=

r⊕
i=1

R(−mi)n =

r⊕
i=1

Rn−mi .
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For instance, if e1, . . . , er ∈ F is the standard basis, then degF (ei) = mi. The homogeneous elements of F
of degree n are of the form

r∑
i=1

siei

where each si is homogeneous in R with degR si = n−mi, because we need degF (siei) = degR si +mi.

ex190905c Example III.A.3.12. In the R-module
R(−a)
⊕

R(−b)
we have the element (

−Y b
Xa

)
∈

R(−a)
⊕

R(−b)


a+b

because this element can be written as

−Y be1 +Xae2,

where −Y b and e2 each have degree b, and Xa and e1 have degree a.

def190905d Definition III.A.3.13. Let F and G be free graded R-modules of finite rank. A homomorphism φ : F →
G is graded (or homogeneous) if φ(Fn) ⊆ Gn for all n ∈ Z.

fact190905e Fact III.A.3.14. A homomorphism φ : F → G between graded free modules of finite rank is graded if
and only if φ(ei) ∈ Gmi for all i = 1, . . . , r, where F = ⊕ni=1R(−mi).

ex190905f Example III.A.3.15. Let R = k[X,Y ] and let I =
〈
Xa, Y b

〉
≤ R be an ideal where a, b ≥ 2. Then we

have the following (augmented) free resolution of R/I.

0 // R(−a− b)

−Y b
Xa


//
R(−a)
⊕

R(−b)

(
Xa Y b

)
// R // R/I // 0

ε � //
(
−Y b
Xa

)

e1
� // Xa

e2
� // Y b

This is graded because, for instance, the elements ε ∈ R(−a − b) and −Y b ∈ R(−a) and Xa ∈ R(−b) all
have degree a+ b.

fact190905g Fact III.A.3.16. With notation as in Fact III.A.3.14, if φ is graded, then

Imφ = 〈φ(e1), . . . , φ(er)〉

is generated by finitely many homogeneous elements. One can also show that Kerφ is generated by finitely
many homogeneous elements of F .

ex190905h Example III.A.3.17. The graded homomorphism

φ :
R(−a)
⊕

R(−b)

(
Xa Y b

)
// R

has kernel generated by the vector (−Y b Xa)T , a homogeneous element of degree a+ b.

We now give a sketch of the proof of Hilbert’s Syzygy Theorem (graded version).
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Proof. By assumption I = 〈f1, . . . , fβ1〉 and we let degR fi = mi. We begin computing the resolution
in the usual manner, surjecting onto R/I from R in the natural way and then onto Ker τ = I from a free
module. ⊕β1

i=1R(−mi)

(
f1 · · · fβ1

)
∂1

// R
τ // R/I // 0

By construction Im ∂1 = I = Ker τ and we consider that by Fact III.A.3.16, we know Ker ∂1 is free and

generated by finitely many homogeneous elements of
⊕β1

i=1R(−mi). So there exists a non-negative integer

β2 and homogeneous column vectors f1,i, . . . , f1,β2 ∈
⊕β1

i=1R(−mi) such that Ker ∂1 = 〈f1,i, . . . , f1,β2〉. For
each i = 1, . . . , β2 let m1,i denote the degree of f1,i and we may surject onto Ker ∂1 from the free module⊕β2

i=1R(−m1,i). Call this map τ1. If ι1 : Ker ∂1 →
⊕β1

i=1R(−mi) is the natural injection, then we define
∂2 = ι1 ◦ τ1 to produce the following commutative diagram .

⊕β2

i=1R(−m1,i)

(
f1,1 · · · f1,β2

)
∂2

//

τ1 ''

⊕β1

i=1R(−mi)

(
f1 · · · fβ1

)
∂1

// R
τ // R/I // 0

Ker ∂1

((

ι1

77

0

66

0

Note that ∂2 is given by a β1×β2 matrix. Note also that for each fixed i, each entry of f1,i is also homogeneous
by the notation given in III.A.3.11. One can continue this procedure to produce the desired diagram. �

III.A.4. Chain Complexes
section063021e

Throughout this chapter, assume only that R is a commutative ring with identity.

fact190905i Fact III.A.4.1. Given R-module homomorphisms L
f // M

g // N , we have Im f ⊆ Ker g if and
only if g ◦ f = 0.

def190905j Definition III.A.4.2. A chain complex over R is a sequence of R-module homomorphisms

A = · · ·
∂Ai+2 // Ai+1

∂Ai+1 // Ai
∂Ai // Ai−1

∂Ai−1 // · · ·

such that ∂Ai ◦ ∂Ai+1 = 0 for all i ∈ Z. If A is an R-complex, then elements a ∈ An have homological degree
|a| = n.

note190905k Note III.A.4.3. We give a few remarks about the relationship between exact sequences and chain com-
plexes.

note190905k.a (a) An exact sequence of R-module homomorphisms is an R-complex.

note190905k.b (b) R-complexes are not necessarily exact. For example, the R-complex 0 // M // 0 is exact if and
only if M = 0.

note190905k.c (c) Given an augmented free resolution

P+ = · · ·
∂P3 // P2

∂P2 // P1

∂P1 // P0
τ // M // 0,

the sequence

P+ = · · ·
∂P3 // P2

∂P2 // P1

∂P1 // P0
// 0

is not exact in general, but is an R-complex called a (truncated) free resolution of M .

def190905l Definition III.A.4.4. Let A be an R-complex as in Definition III.A.4.2. For all n ∈ Z, denote by
Zn(A) = Zn the set of cycles of homological degree n and denote by Bn(A) = Bn the set of boundaries of
homological degree n, i.e.,

Zn(A) = Zn = Ker ∂An ⊆ An
Bn(A) = Bn = Im ∂An+1 ⊆ Zn,
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where the containments on the right are as submodules. The nth homology module of A is

Hn(A) =
Zn(A)

Bn(A)
.

note190905m Note III.A.4.5. Let A be an R-complex.

(a) A is exact if and only if Zn = Bn for all n ∈ Z if and only if Hn(A) = 0 for all n ∈ Z.
(b) Given an augmented free resolution P+ as in Note III.A.4.3(c), we have

Hn(P ) ∼=

{
0 n 6= 0

M n = 0,

because of the following.

M = Im τ ∼=
P0

Ker τ
=

P0

Im ∂P1
=

Ker ∂P0
Im ∂P1

= H0(P )

(c) Given an R-complex as in Definition III.A.4.2, if ∂Ai+1 = 0 and ∂Ai = 0, then we have

Hi(A) =
Ker ∂Ai
Im ∂Ai+1

=
Ai
0
∼= Ai.

(d) Given an R-complex as in Definition III.A.4.2, if ∂Ai+1 = 0, then we have

Hi(A) =
Ker ∂Ai

0
∼= Ker ∂Ai .

(e) Given an R-complex as in Definition III.A.4.2, if ∂Ai = 0, then we have

Hi(A) =
Ai

Im ∂Ai+1

= Coker
(
∂Ai+1

)
.

def190910a Definition III.A.4.6. Let A and Y be R-complexes.

(a) The shift or suspension of A is an R-complex denoted ΣA where (ΣA)i = Ai−1 and ∂ΣA
i = −∂Ai−1.

(b) The direct sum of A and Y is the R-complex A ⊕ Y where (A ⊕ Y )i = Ai ⊕ Yi and ∂A⊕Yi (a, y) =(
∂Ai (a), ∂Yi (y)

)
.

rmk190910b Remark III.A.4.7. The homology modules of ΣA are the homology modules of the original complex A:

Hi(ΣA) = Hi−1(A).

To see this, we observe

A = · · ·
∂Ai+2 // Ai+1

∂Ai+1 // Ai
∂Ai // Ai−1

∂Ai−1 // · · ·

ΣA = · · ·
−∂Ai+1 // Ai

−∂Ai // Ai−1

−∂Ai−1 // Ai−2

−∂Ai−2 // · · ·

and compute

Hi(ΣA) =
Ker ∂ΣA

i

Im ∂ΣA
i+1

=
Ker−∂Ai−1

Im−∂Ai
=

Ker ∂Ai−1

Im ∂Ai
= Hi−1(A).

The homology modules of A⊕ Y are exactly what one might want them to be:

Hi(A⊕ Y ) ∼= Hi(A)⊕Hi(Y ).

This follows from the definition of A⊕ Y and the first isomorphism theorem, which we show below.

A
⊕
Y

· · · //
Ai+1

⊕
Yi+1

∂Ai+1 0
0 ∂Yi+1


//
Ai
⊕
Yi

∂Ai 0
0 ∂Yi


//
Ai−1

⊕
Yi−1

// · · ·
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Hi(A⊕ Y ) =

Ker
∂Ai 0
0 ∂Yi

Im
∂Ai+1 0

0 ∂Yi+1

=

Ker ∂Ai
⊕

Ker ∂Yi


Im ∂Ai+1

⊕
Im ∂Yi+1


∼=

(
Ker ∂Ai / Im ∂Ai+1

)
⊕(

Ker ∂Yi / Im ∂Yi+1

)
def190905n Definition III.A.4.8. A chain map between R-complexes A and Y is a commutative ladder diagram.

A

φ

��

· · ·
∂Ai+2 // Ai+1

∂Ai+1 //

φi+1

��

Ai
∂Ai //

φi

��

Ai−1

∂Ai−1 //

φi−1

��

· · ·

Y · · ·
∂Yi+2

// Yi+1
∂Yi+1

// Yi
∂Yi

// Yi−1
∂Yi−1

// · · ·

In other words, φ = {φi} is a sequence of R-module homomorphisms φi : Ai → Yi such that the above
diagram commutes, i.e., such that ∂Yi ◦ φi = φi−1 ◦ ∂Ai for all i ∈ Z. We say the φi’s are “compatible with
the differentials” of the complexes. (For those familiar with the language of categories, chain maps are the
“morphisms in the category of R-complexes”.) The chain map φ is an isomorphism if it has a two-sided
inverse, i.e., if there exists a chain map ψ : Y → A such that ψi ◦ φi = idAi and φi ◦ ψi = idYi for all i ∈ Z.

ex190910c Example III.A.4.9. Let A and Y be R-complexes.

(a) The zero map A
0−→ Y is a chain map, since the following diagram commutes.

· · · // Ai //

0

��

Ai−1
//

0

��

· · ·

· · · // Yi // Yi−1
// · · ·

(b) For any x ∈ R, the “homothety” map A
x−→ A is a chain map, because the differentials ∂Ai are R-linear,

i.e., we have ∂Ai (xa) = x · ∂Ai (a) for all a ∈ Ai, so the following diagram commutes.

· · · // Ai
∂Ai //

x

��

Ai−1
//

x

��

· · ·

· · · // Ai
∂Ai // Ai−1

// · · ·

(c) Let the following be a free resolution of an R-module M .

P+ = · · ·
∂P2 // Rβ1

∂P1 // Rβ0
τ // M // 0

Then the surjection τ determines the following chain map.

P

τ

��

· · ·
∂P2 // Rβ1

∂P1 //

��

Rβ0 //

τ

��

0

��
M · · · // 0 // M // 0

(d) If φ : A → Y is a chain map, then φ is an isomorphism if and only if each φi is an isomorphism, i.e., if
and only if each φi is 1-1 and onto. (One proves this with a relatively standard diagram chase.)

The next result says that chain maps induce maps on homology modules.

thm190910d Theorem III.A.4.10. Let φ : A→ Y be a chain map.

thm190910d.a (a) We have φi(Zi(A)) ⊆ Zi(Y ) and φi(Bi(A)) ⊆ Bi(Y ) for all i ∈ Z.
thm190910d.b (b) There exists a well-defined R-module homomorphism Hi(φ) : Hi(A)→ Hi(Y ) given by

Hi(φ)(a) = φ(a).
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Proof. (a) First let a ∈ Zi(A). Then we have(
φi−1 ◦ ∂Ai

)
(a) = φi−1(0) = 0

by definition of Zi(A). Therefore since φ is chain map we have(
∂Yi ◦ φi

)
(a) =

(
φi−1 ◦ ∂Ai

)
(a) = 0

which implies φi(a) ∈ Zi(Y ).
Second, if we let b ∈ Bi(A), then there exists an element c ∈ Ai+1 such that ∂Ai+1(c) = b. Since φ is a

chain map we have

φ(b) =
(
φi ◦ ∂Ai+1

)
(c) =

(
∂Yi+1 ◦ φi+1

)
(c) ∈ Bi(Y ).

(b) Let Zi(φ) and Bi(φ) each be given by the same rule as φi with the appropriate restricted domain and
codomain. By part (a) we have the following commutative diagram.

Bi(A)
⊆ //

Bi(φ)

��

Zi(A)
⊆ //

Zi(φ)

��

Ai

φi

��
Bi(Y )

⊆
// Zi(Y )

⊆
// Yi

We claim the following is also a commutative diagram, where τA and τY are the natural surjections.

Bi(A)
⊆ //

Bi(φ)

��

Zi(A)
τA //

Zi(φ)

��

Hi(A) 3 a

Hi(φ)

��

_

��
Bi(Y )

⊆
// Zi(Y )

τY
// Hi(Y ) 3 φ(a)

Note it suffices to show that Hi(φ) is well-defined and R-linear, since the commutivity of the diagram is by
construction. We know Hi(φ) lands well by the first equality in part (a). To show Hi(φ) preserves equality
(i.e., is independent of our choice of representative), let a, a′ ∈ Zi(A) such that a = a′ in Hi(A). This implies
a−a′ ∈ Bi(A) and therefore it is now straightforward to show that Hi(φ) is R-linear. By the second equality

in part (a) we have φ(a)− φ(a′) = φ(a− a′) ∈ Bi(Y ), i.e., φ(a)− φ(a′) = 0 ∈ Hi(Y ). �

def190910e Definition III.A.4.11. A quasiisomorphism is a chain map φ : A→ Y such that Hi(φ) : Hi(A)→ Hi(Y )
is an isomorphism for all i ∈ Z.

ex190910f Example III.A.4.12. Let A and Y be R-complexes.

ex190910f.a (a) The zero map A
0−→ Y induces the zero map on homology since

Hi(0)(a) = 0(a) = 0 = 0.

ex190910f.b (b) For a fixed x ∈ R, the homothety map A
x−→ A induces a homothety map on homology, since

Hi(x)(a) = x · a = x · a.
One might also use the more cumbersome, yet more transparent notation µA,x to denote the homothety
map on A by the element x. With this notation, the above display says that Hi(µ

A,x) = µHi(A),x.
As a for instance, if x ∈ R is a unit, then µA,x is an isomorphism and the preceding paragraph

implies Hi(µ
A,x) is an isomorphism for all i ∈ Z. Hence µA,x is a quasiisomorphism. In general, we will

see in Proposition III.A.4.13 that if φ is an isomorphism, then it is also a quasiisomorphism.
ex190910f.c (c) Recall from Example III.A.4.9 that the augmented free resolution P+ of an R-module M determines

a chain map τ : P → M . We claim τ is a quasiisomorphism. To see that Hi(τ) is an isomorphism for
every i ∈ Z, first note that for all i 6= 0 one has Hi(P ) = 0 = Hi(M) since P is exact and Ci = 0 for
all i 6= 0. Hence Hi(τ) is the identity map on the zero module and is therefore an isomorphism for all
i 6= 0. When i = 0, we have the following commutative diagram.

H0(P )
H0(τ)

∴∼=
//

∼=α
��

H0(M)

||

M
∼=
γ

// M

0
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The map γ is the natural surjection and is an isomorphism by the first isomorphism theorem. Observe
also that

H0(P ) =
Rβ0

Im ∂P1
=

Rβ0

Ker τ

so the surjection α induced by τ is an isomorphism also by the first isomorphism theorem. Hence H0(τ)
is a composition of isomorphisms and is therefore itself an isomorphism.

prop190910g Proposition III.A.4.13. Let φ : A→ Y and ψ : C → A be chain maps.

prop190910g.a (a) The composition φ ◦ ψ : C → Y is a chain map.
prop190910g.b (b) Hi(−) respects compositions, i.e., Hi(φ ◦ ψ) = Hi(φ) ◦Hi(ψ) for all i ∈ Z.
prop190910g.c (c) If φ is an isomorphism, then φ is a quasiisomorphism.

Proof. (a) This is proved using a standard diagram chase on the following section of a ladder diagram.

Ci
∂Ci //

ψi

��

Ci−1

ψi−1

��
Ai

∂Ai //

φi

��

Ai−1

φi−1

��
Yi

∂Yi // Yi−1

(b) Note that we are trying to prove that the commutative diagram

C
ψ //

φ◦ψ ��

A

φ

��
Y

given in (a) induces the following commutative diagram.

Hi(C)
Hi(ψ) //

Hi(φ◦ψ) $$

Hi(A)

Hi(φ)

��
Hi(Y )

To show this, for any c ∈ Ci we have

Hi(φ ◦ ψ)(c) = (φ ◦ ψ)(c) = φ(ψ(c)) = Hi(φ)
(
ψ(c)

)
= Hi(φ) (Hi(ψ)(c)) = (Hi(φ) ◦Hi(ψ)) (c).

(c) Assume φ is an isomorphism and let ζ : Y → A be its two-sided inverse. Then the composition φ ◦ ζ is
equal to the homothety map µY,1. Moreover, by Example III.A.4.12(b) and by part (b) we have

Hi(φ) ◦Hi(ζ) = Hi(φ ◦ ζ) = Hi(µ
Y,1) = µHi(Y ),1 = idHi(Y ) .

Similarly we have

Hi(ζ) ◦Hi(φ) = Hi(ζ ◦ φ) = Hi(µ
A,1) = µHi(A),1 = idHi(A) .

Hence Hi(φ) is an isomorphism with the two-sided inverse Hi(ζ), i.e.,

(Hi(φ))
−1

= Hi(φ
−1).

�

ex190910h Example III.A.4.14. The converse of Proposition III.A.4.13 fails in general. The chain map τ : P →M
from Example III.A.4.12 is a quasiisomorphism, but is almost never an isomorphism. For instance, if M 6∼=
Rβ0 , then it is not an isomorphism.
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def190910i Definition III.A.4.15. A short exact sequence of chain maps is a sequence

0 // A
φ // C

ψ // D // 0

of chain maps such that each “level” is a short exact sequence

0 // Ai
φi // Ci

ψi // Di
// 0.

For diagram chases it may also be convenient to display a short exact sequence of chain maps as follows.

...

∂Ai+2

��

...

∂Ci+2

��

...

∂Di+2

��
0 // Ai+1

φi+1 //

∂Ai+1

��

Ci+1

ψi+1 //

∂Ci+1

��

Di+1
//

∂Di+1

��

0

0 // Ai
φi //

∂Ai
��

Ci
ψi //

∂Ci
��

Di
//

∂Di
��

0

0 // Ai−1

φi−1 //

∂Ai−1
��

Ci−1

ψi−1 //

∂Ci−1
��

Di−1
//

∂Di−1
��

0

...
...

...

Below we present Theorem III.A.4.16 along with two different proofs. The first requires the Snake
Lemma, which we present as an unnumbered result before giving the theorem.

lem190912a Lemma (Snake Lemma). Given a commutative diagram of R-modules with exact rows

U
f //

u

��

V
g //

v

��

W //

w

��

0

0 // U ′
f ′
// V ′

g′
// W ′

there exists an exact sequence

Keru
f̃ // Ker v

g̃ // Kerw
σ // Coker (u)

f ′ // Coker (v)
g′ // Coker (w)

x � // f(x) x′ � // f ′(x′)

y � // g(y) y′ � // g′(y′)

where Coker (u) = U ′/ Imu, and the other cokernels are defined similarly. The map σ is defined as follows.
Let z ∈ Kerw. Then w(z) = 0 and since g is surjective let y ∈ V such that g(y) = z. By the commutivity of
the diagram we have

g′(v(y)) = w(g(y)) = w(z) = 0,

so v(y) ∈ Ker g′ = Im f ′. Let x′ ∈ U ′ such that f ′(x′) = v(y). Then σ(z) is defined as

σ(z) = x′.

Now we present the theorem promised. The first proof uses the Snake Lemma and the second is a more
“manual” proof.
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thm190910j Theorem III.A.4.16. Given a short exact sequence of chain maps as in Definition III.A.4.15, there
exists the following long exact sequence on homology.

· · ·
ði+1 // Hi(A)

Hi(φ) // Hi(C)
Hi(ψ) // Hi(D)

ði // Hi−1(A)
Hi−1(φ) // · · ·

We call ði a connecting homomorphism.

Proof. First let us construct ði. It will be helpful to have the following section of ladder diagram in
view for this part.

Ci
ψi //

∂Ci

��

Di
//

∂Di

��

0

0 // Ai−1
φi−1

// Ci−1
ψi−1

// Di−1
// 0

Let d ∈ Hi(D) and we want to define ði(d). Since d ∈ Zi(D), we know ∂Di (d) = 0 and since ψi is surjective
let c ∈ Ci such that ψi(c) = d. Since ψ is a chain map we have

ψi−1

(
∂Ci (c)

)
= ∂Di (ψi(c)) = ∂Di (d) = 0,

so ∂Ci (c) ∈ Kerψi−1 = Imφi−1. Therefore let a ∈ Ai−1 such that φi−1(a) = ∂i(c). We define

ði
(
d
)

= a ∈ Hi−1(A).

We claim the following is a commutative diagram R-module homomorphisms with exact rows.

Coker
(
∂Ai+2

) φi+1 //

∂̂Ai+1

��

Coker
(
∂Ci+2

) ψi+1 //

∂̂Ci+1

��

Coker
(
∂Di+2

)
//

∂̂Di+1

��

0

0 // Ker ∂Ai
φ̃i

// Ker ∂Ci
ψ̃i

// Ker ∂Di

(III.A.4.16.1) eqn190912a

Step 1: We show that

∂̂Ai+1 : Coker
(
∂Ai+2

) � // Ker ∂Ai

a
� // ∂Ai+1(a)

is a well-defined R-module homomorphism. Since ∂Ai+1(Ai+1) = Bi(A) ⊆ Zi(A), we may restrict the

codomain of ∂Ai+1 to get the well-defined R-module homomorphism ζ : Ai+1 → Zi(A). Since Bi+1(A) ⊆
Zi+1(A) we also have ζ(Bi+1(A)) = ∂Ai+1(Bi+1(A)) = 0. Therefore we have the commutative diagram

Ai+1
// //

ζ

��

Ai+1/Bi+1(A)

∃!∂̂Ai+1xx
Zi(A)

where ∂̂Ai+1(x) = ∂Ai+1(x). Moreover, we have

Im ∂̂Ai+1 = Im ζ = Im ∂Ai+1

and

Ker ∂̂Ai+1 =
Ker ζ

Bi+1(A)
=

Ker ∂Ai+1

Im ∂Ai+2

= Hi+1(A).
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Identical arguments can be used to show the well-definedness of ∂̂Ci+1 and ∂̂Di+1 as well. One also finds that

Im ∂̂Ci+1 = Im ∂Ci+1, Im ∂̂Di+1 = Im ∂Di+1, Ker ∂̂Ci+1 = Hi+1(C), and Ker ∂̂Di+1 = Hi+1(D) as well.

Step 2: We apply the Snake Lemma to

0 // Ai+2

φi+2 //

∂Ai+2

��

Ci+2

ψi+2 //

∂Ci+2

��

Di+2
//

∂Di+2

��

0

0 // Ai+1
φi+1

// Ci+1
ψi+1

// Di+1
// 0

to get the exact sequence

· · · // Coker
(
∂Ai+2

) φi+1 // Coker
(
∂Ci+2

) ψi+1 // Coker
(
∂Di+2

)
// 0

a
� // φi+1(a) c

� // ψi+1(c)

where the exactness on the right follows from the surjectivity of ψi+1.

Step 3: We apply the Snake Lemma to

0 // Ai
φi //

∂Ai
��

Ci
ψi //

∂Ci
��

Di
//

∂Di
��

0

0 // Ai−1
φi−1

// Ci−1
ψi−1

// Di−1
// 0

to get the exact sequence

0 // Ker ∂Ai
φ̃i // Ker ∂Ci

ψ̃i // Ker ∂Di
// · · ·

a � // φi(a) c � // ψi(c)

where the exactness on the left follows from the injectivity of φi.

Step 4: We show that (III.A.4.16.1) commutes. For any c ∈ Coker
(
∂Ci+2

)
we have

∂̂Di+1

(
ψi+1(c)

)
= ∂̂Di+1

(
ψi+1(c)

)
= ∂Di+1 (ψi+1(c))

and

ψ̃i

(
∂̂Ci+1(c)

)
= ψ̃i

(
∂Ci+1(c)

)
= ψi

(
∂Ci+1(c)

)
,

which are equivalent since ψ is a chain map. One can similarly show that the left square commutes using
the fact that φ is a chain map.

Step 5: From the conclusion of Step 1 we have

Coker
(
∂̂Ai+1

)
=

Ker ∂Ai

Im ∂̂Ai+1

=
Ker ∂Ai
Im ∂Ai+1

= Hi(A),

as well as Coker
(
∂̂Ci+1

)
= Hi(C) and Coker

(
∂̂Di+1

)
= Hi(D).
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Step 6: Having established our claim that (III.A.4.16.1) is a commutative diagram, we apply the Snake
Lemma once more to obtain the following exact sequence.

Ker ∂̂Ai+1

φ̃i+1

Hi+1(φ)
//

||

Ker ∂̂Ci+1

ψ̃i+1

Hi+1(ψ)
//

||

Ker ∂̂Di+1
σ

ði+1

//

||

Coker
(
∂̂Ai+1

)
φ̃i

Hi(φ)
//

||

Coker
(
∂̂Ci+1

)
ψ̃i

Hi(ψ)
//

||

Coker
(
∂̂Di+1

)
||

Hi+1(A) Hi+1(C) Hi+1(D) Hi(A) Hi(C) Hi(D)

a
� // φi+1(a) c

� // ψi(c)

It remains only to justify that the map σ given by the Snake Lemma is the same map ði+1 that we constructed.

To do so we perform a diagram chase on (III.A.4.16.1). For any d ∈ Ker ∂̂Di+2 we have ∂Di+2(d) = ∂̂Di+2

(
d
)

= 0

and by the exactness of the top row we let c ∈ Coker
(
∂Ci+2

)
such that ψi+1(c) = ψi+1(c) = d. Since the right

square commutes we have

ψi(∂
C
i+1(c)) = ψ̃i

(
∂̂Ci+1(c)

)
= ∂̂Di+1

(
ψi+1(c)

)
= ∂̂Di+1

(
d
)

= 0,

so ∂̂Ci+1(c) ∈ Ker ψ̃i = Im φ̃i and ∂Ci+1(c) ∈ ker(ψi) = Imφi. Let a ∈ Ker ∂Ai such that φi(a) = φ̃i(a) =

∂̂Ci+1(c) = ∂Ci+1(c). Comparing the rules defining σ and ði, we conclude that

σ
(
d
)

= a = ði
(
d
)
.

�

Alternate proof. As with the previous proof, the first step is to construct ð. Since this argument is
the same as that in the previous proof, we begin with the second step.

Step 2: We show ði is well-defined. First we have

φi−2

(
∂Ai−1(a)

)
= ∂Ci−1 (φi−1(a))

since φ is a chain map. Then
∂Ci−1 (φi−1(a)) = ∂Ci−1

(
∂Ci (c)

)
= 0

using the definition of a and that C is an R-complex. Since φi−2 is injective, this implies ∂Ai−1(a) = 0, i.e.,

a ∈ Ker ∂Ai−1, as desired.

Second we will show a ∈ Hi−1(A) is independent of any choices made in Step 1. Let d, d′ ∈ Ker ∂Di
such that d = ξ = d′, let c, c′ ∈ Ci such that ψi(c) = d and ψi(c

′) = d′, and let a, a′ ∈ Ai−1 such that
φi−1(a) = ∂Ci (c) and φi−1(a′) = ∂Ci (c′). We need to show a = a′ in Hi−1(A) = Ker ∂Ai−1/ Im ∂Ai , or in other

words, we need to show a− a′ ∈ Im ∂Ai .

By assumption d = d′ ∈ Hi(A) = Ker ∂Ai / Im ∂Ai+1, so d − d′ ∈ Im ∂Ai+1 and we let η ∈ Di+1 such that

∂Di+1(η) = d− d′. Since ψi+1 is surjective, we may let ν ∈ Ci+1 such that ψi+1(ν) = η and we compute the
following.

ψi(c− c′ − ∂Ci+1(ν)) = ψi(c)− ψi(c′)− (ψi ◦ ∂Ci+1)(ν) = d− d′ − (d− d′) = 0

In the above calculation we rely only on the definitions of our elements and the linearity of ψi. By this
calculation we know c − c′ − ∂Ci+1(ν) ∈ ker(ψi) = Imφi so let ω ∈ Ai such that φi(ω) = c − c′ − ∂Ci+1(ν).

Since a, a′, ∂Ai (ω) ∈ Ai−1, we use the linearity of φi−1 to get

φi−1

(
∂Ai (ω)− (a− a′)

)
=
(
φi−1 ◦ ∂Ai

)
(ω)− φi−1(a) + φi−1(a′).

Since φ is a chain map, then(
φi−1 ◦ ∂Ai

)
(ω)− φi−1(a) + φi−1(a′) =

(
∂Ci ◦ φi

)
(ω)− ∂Ci (c) + ∂Ci (c′).

The definition of ω gives a similar argument as for φi−2 above.(
∂Ci ◦ φi

)
(ω)− ∂Ci (c) + ∂Ci (c′) = ∂Ci

(
c− c′ − ∂Ci+1(ν)

)
− ∂Ci (c) + ∂Ci (c′)

= ∂Ci
(
c− c′ − ∂Ci+1(ν)− c+ c′

)
= −

(
∂Ci ◦ ∂Ci+1

)
(ν)

= 0.
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Since φi−1 is injective, this implies ∂Ai (ω)− (a− a′) = 0 or equivalently

a− a′ = ∂Ai (ω) ∈ Im ∂Ai

completing this step.

Step 3: Here we prove ði is an R-module homomorphism. Let ξ, ξ′ ∈ Hi(D) and r ∈ R. Also let
d, d′ ∈ Ker ∂Di such that d = ξ and d′ = ξ′, let c, c′ ∈ Ci such that ψi(c) = d and ψi(c

′) = d′, and let
a, a′ ∈ Ai−1 such that φi−1(a) = ∂Ci (c) and φi−1(a′) = ∂Ci (c′).

Notice that rd + d′ ∈ Ker ∂Di and hence it makes sense to write rd+ d′ = rξ + ξ′. Notice also that
rc+ c′ ∈ Ci so we have

ψi(rc+ c′) = ψi(rc) + ψi(c
′) = r · ψi(c) + ψi(c

′) = rd+ d′.

Finally note that ra+ a′ ∈ Ai−1 for which we have

φi−1(ra+ a′) = φi−1(ra) + φi−1(a′) = r · φi−1(a) + φi−1(a′)

= r · ∂Ci (c) + ∂Ci (c′) = ∂Ci (rc) + ∂Ci (c′) = ∂Ci (rc+ c′).

Therefore we have an element satisfying the definition of ði described in Step 1 of the previous proof so we
conclude this step in the following display.

ði(rξ + ξ′) = ra+ a′ = r · a+ a = r · ði(ξ) + ði(ξ)

Step 4: We tackle the first of several questions of exactness. Here we show ImHi(φ) ⊆ KerHi(ψ). Let
δ ∈ Hi(A) and let ρ ∈ Ker ∂Ai such that ρ = δ. Therefore we have

Hi(ψ) (Hi(φ)(δ)) = Hi(ψ)
(
φi(ρ)

)
= (ψi ◦ φi)(ρ) = 0 = 0

where the third equality comes from the exactness of the original sequence of chain maps.

Step 5: We now show ImHi(φ) ⊇ KerHi(ψ). Let δ ∈ KerHi(ψ) and let ρ ∈ Ker ∂Ci such that ρ = δ. This
gives

0 = Hi(ψ)(ρ) = ψi(ρ) ∈ Hi(D) =
Ker ∂Di
Im ∂Di+1

.

Therefore ψi(ρ) ∈ Im ∂Di+1 so we lift to some µ ∈ Di+1 such that ∂Di+1(µ) = ψi(ρ) and lift again to some

σ ∈ Ci+1 such that ψi+1(σ) = µ (since ψi+1 is surjective). Since ρ, ∂Ci+1(σ) ∈ Ci, we consider the element

ρ− ∂Ci+1(σ) ∈ Ci. Using linearity and the fact that ψ is a chain map we compute

ψi(ρ− ∂Ci+1(σ)) = ψi(ρ)− (ψi ◦ ∂Ci+1)(σ) = ψi(ρ)− (∂Di+1 ◦ ψi+1)(σ) = ψi(ρ)− ∂Di+1(µ) = 0.

Hence ρ− ∂Ci+1(σ) ∈ ker(ψi) = Imφi and we let τ ∈ Ai such that φi(τ) = ρ− ∂Ci+1(σ). We claim τ ∈ Ker ∂Ai
and point out it suffices to show

(
φi−1 ◦ ∂Ai

)
(τ) = 0 since φi−1 is injective. We compute(

φi−1 ◦ ∂Ai
)

(τ) = ∂Ci (φi(τ)) = ∂Ci (ρ− ∂Ci+1(σ)) = ∂Ci (ρ)−
(
∂Ci ◦ ∂Ci+1

)
(σ) = 0

where the last equality holds by definition of ρ and because C is a chain complex.

We consider ρ, ∂Ci+1(σ) ∈ Ker ∂Ci and τ ∈ Ker ∂Ai , which represent the cosets ρ, ∂Ci+1(σ)
∈ Hi(C) and τ ∈ Hi(A). Therefore it makes sense to compute

Hi(φ)(τ) = φi(τ) = ρ− ∂Ci+1(σ) = ρ− ∂Ci+1(σ) = ρ− 0 = ρ = δ.

Hence δ ∈ ImHi(φ), completing this step.

Step 6: Continuing our proof of exactness, we show here that ImHi(ψ) ⊆ Kerði. Let ζ ∈ Hi(C) and let
c ∈ Ker ∂Ci such that c = ζ. We want to show that (ði ◦Hi(ψ)) (c) = 0. Define d = ψi(c) and we have

Hi(ψ)(c) = ψi(c) = d.

Computing ði(Hi(ψ)(c)) = ði(d) requires some a ∈ Ker ∂Ai−1 such that φi−1(a) = ∂Ci (c). Since c ∈ Ker ∂Ci
by assumption, ∂Ci (c) = 0 = φi−1(0), so setting a = 0 we get

ði(d) = a = 0 = 0.
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Step 7: We now show ImHi(ψ) ⊇ Kerði. Let ξ ∈ Kerði ⊆ Hi(D) and let d ∈ Ker ∂Di such that ξ = d. Fix
some c ∈ Ci such that ψi(c) = d and some a ∈ Ai−1 such that φi−1(a) = ∂Ci (c) ∈ ker(ψi−1) = Imφi−1. Our
construction in Step 1 implies ði(ξ) = a so we have

0 = ði(ξ) = a ∈ Hi−1(A) =
Ker ∂Ai−1

Im ∂Ai
.

Hence a ∈ Im ∂Ai and we let ω ∈ Ai such that ∂Ai (ω) = a. Moreover, φi(ω), c ∈ Ci so we compute the
following.

∂Ci (c− φi(ω)) = ∂Ci (c)−
(
∂Ci ◦ φi

)
(ω)

= ∂Ci (c)−
(
φi−1 ◦ ∂Ai

)
(ω)

= ∂Ci (c)− φi−1(a)

= ∂Ci (c)− ∂Ci (c)

= 0

Therefore c− φi(ω) ∈ Ker ∂Ci and hence c− φi(ω) ∈ Hi(C). We may also compute

Hi(ψ)(c− φi(ω)) = ψi(c− φi(ω)) = ψi(c)− (ψi ◦ φi)(ω) = ψi(c) = d = ξ

where the third equality holds by the exactness of the ith row of the given diagram. Hence ξ ∈ ImHi(ψ),
which completes this step.

Step 8: Here we show Im ði ⊆ KerHi−1(φ). Let ξ ∈ Hi(D) and let d ∈ Ker ∂Di such that ξ = d. We

want to show that Hi−1(φ)
(
ði(d)

)
= 0. Since ψi is surjective, let c ∈ Ci such that ψi(c) = d and since

∂Ci (c) ∈ Kerψi−1 = Imφi−1, let a ∈ Ai−1 such that φi−1(a) = ∂Ci (c). We therefore have

Hi−1(φ)(ði(d)) = Hi−1(φ)(a) = φi−1(a) = ∂Ci (c) = 0

which completes this step.

Step 9: We finally show that Im ði ⊇ KerHi−1(φ). Let λ ∈ KerHi−1(φ) and fix some element a ∈ Ker ∂Ai−1

such that λ = a ∈ Hi−1(A). By assumption we have

0 = Hi−1(φ)(λ) = Hi−1(φ)(a) = φi−1(a) ∈ Hi−1(C) =
Ker ∂Ci−1

Im ∂Ci
.

It follows that φi−1(a) ∈ Im ∂Ci , so we may let c ∈ Ci such that ∂Ci (c) = φi−1(a). Denote ψi(c) = d and
notice by our construction in Step 1, this element is a good candidate on which to apply ði. Observe that

∂Di (d) = ∂Di (ψi(c)) = ψi−1(∂Ci (c)) = (ψi−1 ◦ φi−1)(a) = 0

so d ∈ Ker ∂Di . Therefore d ∈ Hi(D) and

ði(d) = a = λ.

This completes this proof of the theorem. �

def190912b Definition III.A.4.17. Let α : A→ Y be a chain map. The mapping cone of α is an R-complex Cone(α)
defined by

Cone(α)i =
Ai−1

⊕
Yi

−∂Ai−1 0
αi−1 ∂Yi


∂

Cone(α)
i

//
Ai−2

⊕
Yi−1

= Cone(α)i−1.

ex190912c Example III.A.4.18. Recall again Examples III.A.4.9 and III.A.4.12.

(a) The mapping cone of the zero map A
0−→ Y is given by

Ai−1

⊕
Yi

−∂Ai−1 0
0 ∂Yi


//
Ai−2

⊕
Yi−1

.

Hence Cone(0) = ΣA⊕ Y .
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(b) The mapping cone of the homothety map µA,x : A→ A where x ∈ R is given by

Ai−1

⊕
Ai

−∂Ai 0
x ∂Ai−1


//
Ai−2

⊕
Ai−1

where the entry x denotes the map x · idAi−1
.

(c) Finally, the mapping cone of τ : P →M is

Cone(τ)2 Cone(τ)1 Cone(τ)0 Cone(τ)−1

· · · //
Rβ1

⊕
0

−∂P1 0
0 0


//

||

Rβ0

⊕
0

0 0
τ 0


//

||

0
⊕
M

//

||

0

||

and is isomorphic to

· · · // Rβ1
−∂P1 // Rβ0

τ // M // 0

where M is of homological degree 0. Note also that

Σ−1 Cone(τ) = · · · // Rβ1
∂P1 // Rβ0

−τ // M // 0 ∼= P+

where M is of homological degree −1.
(d) If α : A→ Y is a chain map, then Cone(α)i+1 is the direct sum of the two R-modules indicated below.

A

α

��

· · · // Ai+1
//

��

Ai //

��

Ai−1
//

��

· · ·

Y · · · // Yi+1
// Yi // Yi−1

// · · ·

prop190912d Proposition III.A.4.19. If α : A→ Y is a chain map, then Cone(α) is an R-complex.

Proof. It suffices to show ∂
Cone(α)
i−1 ◦ ∂Cone(α)

i = 0. To this end we compute(
−∂Ai−2 0
αi−2 ∂Yi−1

)(
−∂Ai−1 0
αi−1 ∂Yi

)
=

(
∂Ai−2 ◦ ∂Ai−1 0

∂Yi−1 ◦ αi−1 − αi−2 ◦ ∂Ai−1 ∂Yi−1 ◦ ∂Yi

)
=

(
0 0
0 0

)
.

Note that the 2, 2 and 2, 1 and 1, 1-entries of the third matrix here are zero since Y is an R-complex, α is a
chain map, and A is an R-complex, respectively. �

thm190912e Theorem III.A.4.20. Let α : A→ Y be a chain map.

thm190912e.a (a) There exists a short exact sequence of chain maps

0 // Y
( 1

0 )
// Cone(α)

( 0 1 ) // ΣA // 0.

thm190912e.b (b) The connecting homomorphism ði given by Theorem III.A.4.16 is actually the map induced on homology
modules given by Theorem III.A.4.10, i.e.,

ði :

||

Hi(ΣA) //

||

Hi−1(Y ).

Hi−1(α) Hi−1(A)
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Proof. (a) Consider the following diagram with split exact rows:

0 // Yi
( 1

0 )
//

∂Yi

��

Ai−1

⊕
Yi

( 0 1 ) //

(
−∂Ai−1 0

αi−1 ∂Yi

)
��

Ai−1
//

−∂Ai−1

��

0

0 // Yi−1
( 1

0 )
//
Ai−2

⊕
Yi−1

( 0 1 )
// Ai−2

// 0.

A diagram chase shows that this diagram commutes, so it is an exact sequence of chain maps.

(b) Let a ∈ Hi−1(A). Then we can chase this element from Hi(ΣA) to Hi−1(Y ), following the diagram from
the proof of (a). (

a
0

)
� //

_

��

a_

��
αi−1(a)

� //
(

0
αi−1(a)

)
0.

Therefore, we have ði(a) = αi−1(a) = Hi−1(α)(a).
�

cor190917a Corollary III.A.4.21. Let φ : A → C be a chain map. Then φ is a quasiisomorphism if and only if
Cone(φ) is exact.

Proof. Consider the following long exact sequence from Theorems III.A.4.16 and III.A.4.20:

· · · // Hi(Cone(φ)) // Hi−1(A)
Hi−1(φ)// Hi−1(C) // Hi−1(Cone(φ)) // · · · .

(⇐) Suppose Cone(φ) is exact. This implies that Hi(Cone(φ)) = 0 for all i, so the above long exact sequence
looks like

0 // Hi−1(A)
∼=

Hi−1(φ)
// Hi−1(C) // 0.

The isomorphism here is from Fact III.A.2.2(d). Therefore φ is a quasiisomorphism by definition.

(⇒) Suppose φ is a quasiisomorphism. Then a different piece of the above long exact sequence looks like

· · · // Hi(A)
Hi(φ)

∼= // Hi(C) // Hi(Cone(φ)) // Hi−1(A)
Hi−1(φ)

∼= // Hi−1(C) // · · · .

This implies the unlabeled middle two maps are both 0, and it follows that Hi(Cone(φ)) = 0 for all i.
Therefore, Cone(φ) is exact. �

III.A.5. Application: Long Exact Sequences in Ext and Tor
section063021f

fact190917b Fact III.A.5.1. Let N be an R-module and let

0 // M ′
α // M

β // M ′′ // 0

be exact. Then HomR is left exact and ⊗ is right exact.

In other words, the following sequences are exact:

(a) HomR(N,−) = 0 // HomR(N,M ′)
α∗

HomR(N,α)
// HomR(N,M)

β∗

HomR(N,β)
// HomR(N,M ′′) // ?

(b) HomR(−, N) = 0 // HomR(M ′′, N)
α∗

HomR(α,N)
// HomR(M,N)

β∗

HomR(β,N)
// HomR(M ′, N) // ?
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(c) −⊗R N = ? // M ′ ⊗R N
α⊗N // M ⊗R N

β⊗N // M ′′ ⊗R N // 0

ques190917c Question III.A.5.2. What goes in the ?’s ?

defn190917d Definition III.A.5.3. Let P be a free resolution of M . Then

(a) ExtiR(M,N) = H−i(HomR(P,N)), and

(b) TorRi (M,N) = Hi(P ⊗R N).

prop190917e Proposition III.A.5.4. Let A be an R-complex and N and R-module. Then the following are R-
complexes:

(a) HomR(A,N) = · · · // HomR(Ai−1, N)
(∂Ai )

∗

// HomR(Ai, N)
(∂Ai+1)

∗

// · · ·

(b) Ai ⊗R N = · · · // Ai ⊗R N
∂Ai ⊗N // Ai−1 ⊗R N

∂Ai−1⊗N // · · ·

Proof. (a) Let γ ∈ HomR(Ai−1, N), and consider the diagram:

HomR(A,N) = · · · // HomR(Ai−1, N)
(∂Ai )

∗

// HomR(Ai, N)
(∂Ai+1)

∗

// · · ·

γ � // γ ◦ ∂Ai
� // γ ◦ ∂Ai ◦Ai+1 = 0

(b) Let a⊗ n ∈ Ai ⊗R N , and consider the diagram:

Ai ⊗R N = · · · // Ai ⊗R N
∂Ai ⊗N // Ai−1 ⊗R N

∂Ai−1⊗N // · · ·

a⊗ n � // ∂Ai (a)⊗ n � // ∂Ai−1∂
A
i (a)⊗ n = 0⊗ n = 0

By definition, this shows that both of the above are R-complexes.
�

fact190917f Fact III.A.5.5. ExtiR and TorRi are independent of choice of P .

thm190917g Theorem III.A.5.6. Let N be an R-module and let

0 // M ′ // M
α // M ′′

β // 0

be exact. Then there exist the following long exact sequences:

thm190917g.a (a)

0 // HomR(N,M ′)
α∗ // HomR(N,M)

β∗ // HomR(N,M ′′)

// Ext1
R(N,M ′) // Ext1

R(N,M) // Ext1
R(N,M ′′)

// Ext2
R(N,M ′) // · · ·

thm190917g.b (b)

0 // HomR(M ′′, N)
α∗ // HomR(M,N)

β∗ // HomR(M ′, N)

// Ext1
R(M ′′, N) // Ext1

R(M,N) // Ext1
R(M ′, N)

// Ext2
R(M ′′, N) // · · ·
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thm190917g.c (c)

· · · // TorR2 (M ′′, N)

// TorR1 (M ′, N) // TorR1 (M,N) // TorR1 (M ′′, N)

// M ′ ⊗R N
α⊗N // M ⊗R N

β⊗N // M ′′ ⊗R N // 0

Proof. We will prove part (a). Let F be a free resolution of N , and construct the following commutative
diagram with exact rows:

0 // HomR(F,M ′)
α∗ // HomR(F,M)

β∗ // HomR(F,M ′′) // 0

0

��

0

��

0

��
0 // HomR(F0,M

′)
α∗ //

(∂F1 )∗

��

HomR(F0,M)
β∗ //

(∂F1 )∗

��

HomR(F0,M
′′) //

(∂F1 )∗

��

0

0 // HomR(F1,M
′)

α∗ //

(∂F2 )∗

��

HomR(F1,M)
β∗ //

(∂F2 )∗

��

HomR(F1,M
′′) //

(∂F2 )∗

��

0

...
...

...

Here, we have β∗ defined so that for δ ∈ HomR(Fi,M), we have β∗(δ) = β ◦ δ. Since the Fi’s are projective
modules, this implies exactness at HomR(Fi,M

′′) in each row of the above diagram. Then by Theorem
III.A.4.16, we can form the following long exact sequence from each of the above short exact sequences of
chain maps:

0

// H0(HomR(F,M ′))
H0(α∗) // H0(HomR(F,M))

H0(β∗) // H0(HomR(F,M ′′))

// H−1(HomR(F,M ′)) // H−1(HomR(F,M)) // H−1(HomR(F,M ′′))

// H−2(HomR(F,M ′)) // · · · .

Each of the homology groups of degree −i for i ≥ 1 are exactly the corresponding ExtiR from the
statement of the result. Therefore, we only have to show the first row corresponds to the stated theorem.
First, we check that HomR(N,M ′) ∼= H0(HomR(F,M ′)). Notice that

F+ = · · ·
∂F2 // F1

∂F1 // F0
τ // N // 0

is exact, so the following sequence

(F+)∗ = 0 // HomR(N,M ′)
τ∗ // HomR(F0,M

′)
(∂F1 )∗ // HomR(F1,M

′)

is exact. We can use the injectivity of τ∗ and the exactness at HomR(F0,M
′) to build the following sequence

of isomorphisms and equalities:
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HomR(N,M ′) ∼= Im τ∗ = Ker (∂F1 )∗ = H0(HomR(F,M ′)).

The argument is similar for the sequences containing M and M ′′. Next, one can check the following
diagram is commutative.

HomR(N,M ′)
∼= //

α∗

��

H0(HomR(F,M ′))

H0(α∗)

��
HomR(N,M)

∼= // H0(HomR(F,M))

One obtains an analogous diagram for β, and these show how the long exact sequence given in the proof
above matches up with the one in the statement of the result. This proves part (a). In the interest of time,
we omit the remainder of the proof. �

We end this chapter with some computations of long exact sequences.

ex190919a Example III.A.5.7. Let R = k[X,Y ] and N = R/ 〈X,Y 〉. Consider the following short exact sequence

0 // R
X // R // R/(X) // 0.

To compute the associated long exact sequence for ExtR(N,−), we use the following projective resolutions
of N (augmented and truncated), then we dualize.

P+ = 0 // R

−Y
X


// R2

(
X Y

)
// R // N // 0

P = 0 // R

−Y
X


// R2

(
X Y

)
// R // 0

P ∗ = HomR(P,R) =

∼=
��

0 // HomR(R,R)
∂∗1 //

∼=
��

HomR(R2, R)
∂∗2 //

∼=
��

HomR(R,R) //

∼=
��

0

Σ−2P = 0 // R −Y
X


// R2 (

X Y
) // R // 0

The isomorphism above is straightforward to verify. We will discus this “self-duality” isomorphism in more
detail later in the course. Furthermore, from the way that Σ−2P is defined, we have

ExtiR(N,R) ∼= H−i(P
∗) ∼= H−i(Σ

−2P ) = H2−i(P ) ∼=

{
R/(X,Y ) = N if i = 2

0 if i 6= 2

Next, we need to find ExtiR(N,R/(X)). To do so, we consider the isomorphic sequences

HomR(P,R/(X)) =

∼=
��

0 // HomR(R,R/(X))
∂∗1 // HomR(R2, R/(X))

∂∗2 // HomR(R,R/(X)) // 0

A =

∼=
��

0 // R/(X)
(XY )=( 0

Y )
// (R/(X))2

(−Y X )=(−Y 0 ) // R/(X) // 0

C = 0 // k[Y ]
( 0
Y )

// (k[Y ])2
(−Y 0 ) // k[Y ] // 0
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To compute Hi(C), first consider the kernel of the map

(
0
Y

)
: k[Y ] → (k[Y ])2. This map is injective since

Y is a non-zero-divisor on k[Y ]. Therefore the kernel is 0, so for homological degree 0 we get

Ext0
R(N,R/(X)) = H0(HomR(P,R/(X))) = 0.

Next consider the image of the map
(
−Y 0

)
: (k[Y ])2 → k[Y ]. The image of this map is 〈Y 〉, so for

homological degree -2 we get

Ext2
R(N,R/(X)) = H−2(HomR(P,R/(X))) ∼= k[Y ]/ 〈Y 〉 ∼= N.

Finally consider the image of the first map and the kernel of the second map. We have Im

(
0
Y

)
=

〈(
0
Y

)〉
.

Let

(
f
g

)
∈ Ker

(
−Y 0

)
, so −Y f = 0. Since Y is a non-zero-divisor of (k[Y ])2, then f = 0. Therefore,

Ker
(
−Y 0

)
=

{(
0
g

)
| g ∈ k[Y ]

}
=

〈(
0
1

)〉
, so

Ext1
R(N,R/(X)) =

Ker
(
−Y 0

)
Im

(
0
Y

) =

〈(
0
1

)〉
〈(

0
Y

)〉 ∼= k[Y ]

〈Y 〉
∼=
k[X,Y ]

〈X,Y 〉
= N.

Now we have the information needed to construct the long exact sequence in ExtR(N,−) following the
notation from Theorem III.A.5.6(a):

0 // Ext0
R(N,R) = 0 // Ext0

R(N,R) = 0 // Ext0
R(N,R/(X))

// Ext1
R(N,R) = 0 // Ext1

R(N,R) = 0 // Ext1
R(N,R/(X)) ∼= N

// Ext2
R(N,R) ∼= N

0

X
// Ext2

R(N,R) ∼= N // Ext2
R(N,R/(X)) ∼= N

// Ext3
R(N,R) = 0 // · · ·

Since most of the terms are 0, the only interesting part simplifies to the following exact sequence, where the
labelled properties can be determined using the exactness.

0 // N
∼= // N

0 // N
∼= // N // 0.

Additionally, it is possible to show that

ExtiR(N,N) ∼=


N2 if i = 1

N if i = 0, 2

0 otherwise

.

We leave it as an exercise here to verify this and to compute the long exact sequence in ExtR(N,−) associated
to the following short exact sequence:

0 // R/(X)
Y // R/(X) // N // 0.

Exercises

Let R be a non-zero commutative ring with identity. For the following four exercises, consider a sequence of
R-modules and R-module homomorphisms

A = · · ·
∂Ai+1−−−→ Ai

∂Ai−−→ · · · .
Assume that each R-module Ai is free with finite basis Bi.
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exer190822a Exercise III.A.5.8. Fix an integer i. Assume that for all b ∈ Bi we have ∂Ai−1(∂Ai (b)) = 0. Prove that

∂Ai−1∂
A
i = 0.

exer190822b0 Exercise III.A.5.9. Fix integers i and j, and let f : Bi ×Bj → Ai+j be a function. Prove that there is
a unique well-defined R-bilinear map µi,j : Ai × Aj → Ai+j such that µi,j(b, b

′) = f(b, b′) for all b ∈ Bi and
b′ ∈ Bj .

exer190822b Exercise III.A.5.10. Fix integers i and j, and let µi,j : Ai × Aj → Ai+j be an R-bilinear map. For all
a ∈ Ai and A′ ∈ Aj , set aa′ = µi,j(a, a

′).

(a) Assume that i = 0 and there is an element 1 ∈ A0 such that 1b′ = b′ for all b′ ∈ Bj . Prove that 1a′ = a′

for all a′ ∈ Aj .
(b) Assume that for all b ∈ Bi and b′ ∈ Bj we have bb′ = (−1)ijb′b. Prove that for all a ∈ Ai and a′ ∈ Aj

we have aa′ = (−1)ija′a.
(c) Assume that for all b ∈ Bi and b′, b′′ ∈ Bj we have b(b′ + b′′) = bb′ + bb′′. (Use the standard order of

operations here.) Prove that for all a ∈ Ai and a′, a′′ ∈ Aj we have a(a′ + a′′) = aa′ + aa′′.

exer190822c Exercise III.A.5.11. For all integers i and j, let µi,j : Ai × Aj → Ai+j be an R-bilinear map. For all
a ∈ Ai and A′ ∈ Aj , set aa′ = µi,j(a, a

′). Fix integers i, j, and k; and assume that for all b ∈ Bi and
b′ ∈ Bj and b′′ ∈ Bk we have b(b′b′′) = (bb′)b′′. Prove that for all a ∈ Ai and a′ ∈ Aj and a′′ ∈ Ak we have
a(a′a′′) = (aa′)a′′.

exr210722a Exercise III.A.5.12. Let K be a field and consider an exact sequence

0→ Kβd → · · · → Kβ0 → 0.

Prove that
∑d
i=0(−1)iβi = 0.

Hint: induct on d. The base cases are d = 0, 1, 2. In the inductive step, show that βd ≤ βd−1 and filet
the given sequence as follows.

0

$$

0

0

��

K(βd−1−βd)

::

$$
0 // Kβd //

��

Kβd−1 //

::

Kβd−2 // · · · // Kβ0 // 0

Kβd

  

>>

0

@@

0

exr210722b Exercise III.A.5.13. Let k be a field, and set R = k[X,Y, Z] with I = 〈XY,XZ, Y Z〉. Find an
augmented free resolution of R/I over R, and prove that your resolution is exact.

exr210722c Exercise III.A.5.14. Let R be a commutative ring with identity, and consider the following diagram of
R-module homomorphisms where the rows are exact.

0 // A
α // F

τ // C //

f

��

0

0 // A′
α′ // B′

τ ′ // C ′ // 0

Assume that F is a finite rank free R-module, and show that there are R-module homomorphisms g and h
making the following diagram commute.

0 // A
α //

h

��

F
τ //

g

��

C //

f

��

0

0 // A′
α′ // B′

τ ′ // C ′ // 0



CHAPTER III.B

Examples of Free Resolutions

chapter290721b
III.B.1. Resolutions of Mapping Cones

section063021g
Our first goal of this section is, given an R-module homomorphism f : M → N and resolutions of M

and N , to build a resolution of N/f(M).

lem190919b Lemma III.B.1.1 (Lifting Lemma). Let f : M → N be an R-module homomorphism, let P+ be a free
resolution of M , and let Q+ be a free resolution of N . Then there exist chain maps F : P → Q and
F+ : P+ → Q+ such that F+

−1 = f and such that the following diagram commutes:

H0(P )
H0(F ) //

τ∼=
��

H0(Q)

π ∼=
��

M
f // N.

Graphically, the following diagram commutes:

P+ =

F+

��

· · ·
∂P2 // P1

∂P1 //

F1

��

P0
τ //

F0

��

M //

f

��

0

Q+ = · · ·
∂Q2 // Q1

∂Q1 // Q0
π // N // 0.

Proof. Consider the commutative diagram III.B.1.3.1 on the following page, which is obtained via
repeated application of Exercise III.A.5.14. We can see the diagram below commutes, since the equality in
the bottom right comes from the commutativity of diagram III.B.1.3.1. Furthermore, the diagram shows
that F+

−1 = f .

p � //
_

��

τ(p)
_

��

H0(P )
τ //

H0(F )
��

M

f
��

H0(Q)
π // N

F0(p) � // π(F0(p)) = f(τ(p))

�

thm190919d Theorem III.B.1.2. Keep the same notation from Lemma III.B.1.1. If f is one-to-one, then Cone(F )
is a free resolution of N/f(M).

To prove this theorem, we require the following lemma.

lem190919e Lemma III.B.1.3. Let F = (· · ·
∂F2 // F1

∂F1 // F0
// 0) be an R-complex such that each Fi is free

and Hi(F ) = 0 for all i 6= 0. Then F is a free resolution of H0(F ).

Proof. Define τ : F0 → H0(F ) to be the natural projection:

F0
τ→ F0

ImF1 → F0
=

KerF0 → 0

ImF1 → F0
= H0(F ).

Then F+ = (· · ·
∂F2 // F1

∂F1 // F0
τ // H0(F ) // 0) is exact, since τ is onto and Ker τ = Im ∂F1 by

construction. �

159
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0

!!

0
0

M
2

== !!

f
2

��

M

==

=

  

f

��

··
·

∂
P 3

// P
2

== ∂
P 2

//

F
2

��

P
1

∂
P 1

//

!!

F
1

��

P
0

τ
//

==

F
0

��

M
//

f

��

0

M
3

==

f
3

��

M
1

== !!

f
1

��

0

==

0

==

0

0

!!

0
0

N
2

== !!

N

>>

=

  
··
·

∂
Q 3

// Q
2

== ∂
Q 2

// Q
1

!!∂
Q 1

// Q
0

>> π
// N

// 0

N
3

==

N
1

>> !!
0

==

0

==

0

(III.B.1.3.1) eqn190919c

Now we can prove the theorem and thus acheive our first goal for this section.

Proof of III.B.1.2. First, we know Cone(F )i =
Pi−1

⊕
Qi

is free because Pi−1 and Qi are free modules.

Then, compute Hi(Cone(F )) using the following short exact sequence:

0 // Q // Cone(F ) // ΣP // 0.

Then the corresponding long exact sequence of homology modules is
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Hi(Q) // Hi(Cone(F )) // Hi−1(P )

ði−1 // Hi−1(Q).

Here, ði−1 = Hi−1(F ). If i ≥ 2, then Hi(Q) = 0 = Hi−1(P ), so the section of this sequence becomes

0 // Hi(Cone(F )) // 0,

so Hi(Cone(F )) = 0 as well. If i = 1, then ð0 = H0(F ), which is related to f in Lemma III.B.1.1, so if f is
one-to-one, then H0(F ) is one-to-one as well. Then we have

0 // H1(Cone(F )) // H0(P )

H0(F )// H0(Q).

A diagram chase shows that H1(Cone(F )) = 0. If i = 0, then we have

0 // H0(P )
H0(F ) //

τ∼=
��

H0(Q) //

π∼=
��

H0(Cone(F )) //

∃!ρ
��

H−1(P ) = 0

0 // M
f // N // N/f(M) // 0.

By the Snake Lemma, ρ is an isomorphism. Finally, we look at the structure of Cone(F ).

P =

F

��

(· · · // P1
//

F1

��

P0
//

F0

��

0 // 0)

Q = (· · · // Q1
// Q0

// 0)

Cone(F ) = · · · //
P0

⊕
Q1

//
0
⊕
Q0

// 0

By Lemma III.B.1.3, Cone(F ) is a free resolution of N/f(M).
�

Our next goal is to build a free resolution for R-modules of the form R/ 〈f1, . . . , fn〉.

def190924a Definition III.B.1.4. For any ideal J ≤ R and any element r ∈ R, the colon ideal is

(J : r) = {s ∈ R | sr ∈ J } .

ex190924b Example III.B.1.5.
(a) In the ring Z, for the ideal 36Z and the element 15 we have the colon ideal (36Z : 15) = 12Z ≤ Z.
(b) More generally, let R be a unique factorization domain and let f, g ∈ R be elements with respective prime

factorizations f = upe11 · · · penn and g = vpd1
1 · · · pdnn . Then we have the colon ideal (J : g) = pc11 · · · pcnn R

where we set

ci = (ei − di)+ =

{
ei − di ei ≥ di
0 ei < di.

ex190924b.c (c) Let R = k[X1, . . . , Xd] be a polynomial ring and for any vector a = (a1, . . . , an) ∈ Nd set

Xa = Xa1
1 · · ·X

ad
d .

If b1, . . . ,bn ∈ Nd, then for the ideal J =
〈
Xb1 , . . . ,Xbn

〉
one can show

(J : Xa) =
〈
X(b1−a)+ , . . . ,X(bn−a)+

〉
.
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For instance, in the ring R = k[X,Y ] we have(〈
X3, X2Y 2, Y 4

〉
: XY 2

)
=
〈
X2, X, Y 2

〉
=
〈
X,Y 2

〉
.

prop190924c Proposition III.B.1.6. Let J ≤ R be an ideal and let r ∈ R.

(a) J ⊆ (J : r) ≤ R
(b) (J : r) = R if and only if r ∈ J .
(c) The sequence

0 // R

(J : r)
r· // R

J

ψ // R

(J + rR)
// 0

is exact where ψ is the natural surjection.

Proof. (a) The inclusion follows from the definition of an ideal. Hence (J : r) is non-empty. For any
s1, s2 ∈ (J : r) and any t ∈ R we have

(ts1 + s2)r = ts1r + s2r ∈ J

since J is an ideal. This proves colon ideals are indeed ideals.

(b) We observe that (J : r) = R if and only if 1 ∈ (J : r), if and only if r = 1 · r ∈ J .

(c) Since J ⊆ J + rR, the map ψ above is a well-defined surjective R-module homomorphism. By the second
isomorphism theorem

J + rR

J
∼=

rR

J ∩ rR
.

Since rR/(J ∩ rR) is cyclic with generator r = r + J ∩ rR, the module (J + rR)/J is cyclic with generator
r = r + J ∩ rR. Hence by the third isomorphism theorem we have

R/J

〈r〉 (R/J)
=

R/J

(J + rR)/J
∼=

R

J + rR
. (III.B.1.6.1) eqn190924a

Therefore the sequence

R
r· // R

J

ψ // R

J + rR
// 0

is exact since the display (III.B.1.6.1) above shows that

Kerψ = 〈r〉 (R/J) = ImR
r·−→ R/J.

Next we observe that

KerR
r·−→ R/J = {s ∈ R | sr = 0 ∈ R/J } = {s ∈ R | sr ∈ J } = (J : r)

and consider the commutative diagram

R
r· //

π

��

R/J

R/(J : r)

∃π

::

where π is the natural surjection and π is a well-defined R-module monomorphism. Moreover a short diagram
chase shows that π is the homothety map r· and Im r· = Im r. It follows that the desired short exact sequence
exists. �

thm190924d Theorem III.B.1.7. Let f1, . . . , fj , r ∈ R, let J = 〈f1, . . . , fn〉 ≤ R be an ideal, let P be a free resolution
of R/(J : r), and let Q be a free resolution of R/J . Then there is a chain map Φ+ : P+ → Q+ such that
Cone(Φ) is a free resolution of R/(J + rR).
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Proof. The existence of Φ+ follows from Lemma III.B.1.1:

P+ =

∃Φ+

��

· · · // P1
//

Φ+
1

��

P0
//

Φ+
0

��

R

(J : r)
//

� _

r·
��

0

Q+ = · · · // Q1
// Q0

// R

J
// 0.

By Theorem III.B.1.2 we know Cone(Φ) is a free resolution of (R/J)/ Im r· where r· is the vertical homothety
map in the above ladder diagram. Moreover, by the proof of Proposition III.B.1.6 we have

R/J

Im r·
=

R/J

〈r〉 (R/J)
∼=

R

J + rR
=

R

〈f1, . . . , fn〉+ 〈r〉
=

R

〈f1, . . . , fn, r〉
which completes the proof. �

III.B.2. The Koszul Complex
section063021h

ex190924e Example III.B.2.1. Set R = k[X,Y ]. A free resolution of R/ 〈Y 〉 is

P+ =

(
0 // R

Y · // R
τ // R/ 〈Y 〉 // 0

)
and we can use this to build a free resolution of R/ 〈X,Y 〉. We consider the homothety chain map

P+ =

X· Φ+

��

0 // R
Y · //

X·

��

R
τ //

X·

��

R/ 〈Y 〉 //
� _

X·

��

0

P+ = 0 // R
Y ·

// R
τ

// R/ 〈Y 〉 // 0

where the homothety map X· : R/ 〈Y 〉 → R/ 〈Y 〉 is injective since X is a non-zero-divisor on R/ 〈Y 〉 ∼= k[X].
Truncating we get

P+ =

X· Φ

��

0 // R
Y · //

X·

��

R //

X·

��

0

P+ = 0 // R
Y ·

// R // 0.

Then Cone(Φ) is a free resolution of R/ 〈X,Y 〉 by Theorem III.B.1.7.

Cone(Φ) =

 0 //
R
⊕
0

(
−Y 0
X 0

)
//
R
⊕
R

( 0 0
X Y )

//
0
⊕
R

// 0


∼=

 0 // R

(
−Y
X

)
// R2

(X Y ) // R // 0


def190924f Definition III.B.2.2. Let x, y, x1, . . . , xn ∈ R be given. The Koszul complex is defined inductively on

n.

n = 1 : KR(x) = 0 // R
x // R // 0

n = 2 : KR(x, y) = Cone
(
KR(y)

x−→ KR(y)
)

∼= 0 // R
(−yx )

// R2
( x y ) // R // 0

n ≥ 2 : KR(x1, . . . , xn) = Cone
(
KR(x2, . . . , xn)

x1−→ KR(x2, . . . , xn)
)
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ex190924g Example III.B.2.3. Having already explicitly written the Koszul complex for one and two elements, we

compute KR(x, y, z) = Cone
(
KR(y, z)

x−→ KR(y, z)
)

. First we display the appropriate homothety chain
map.

KR(y, z)

x

��

0 // R

(−z
y

)
//

x

��

R2
( y z ) //

x ( x 0
0 x )
��

R //

x

��

0

KR(y, z) 0 // R (−z
y

) // R2

( y z )
// R // 0

Now we can write down the appropriate cone. KR(x, y, z) is equal to

0 //
R
⊕
0

− ( z
−y ) ( 0

0 )
x 0


//
R2

⊕
R

− ( y z ) 0
( x 0

0 x )
(−z
y

)
//
R
⊕
R2

0 ( 0 0 )
x ( y z )


//
0
⊕
R

// 0

and thus isomorphic to

0 // R

(
z
−y
x

)
// R3

(−y −z 0
x 0 −z
0 x y

)
// R3

( x y z ) // R // 0.

Notice the presence of binomial coefficients from Pascal’s triangle in the exponents of the previous display.
These are also present in the n = 1 and n = 2 cases of Definition III.B.2.2. This leads us to the following
proposition.

prop190926a Proposition III.B.2.4. Let x = x1, . . . , xn ∈ R and K = KR(x). Then:

prop190926a.a (a) KR(x)i ∼= R(ni).
prop190926a.b (b) ∂K1 =

(
x1 · · · xn

)
: Rn → R.

prop190926a.c (c) ∂Kn =


(−1)n−1xn

...
−x2

x1

 : R→ Rn.

prop190926a.d (d) The matrix representing ∂Ki consists of 0’s and ±xk’s.

Proof. We will use induction on n.
Base case: The case for n = 1 is covered in Definition III.B.2.2.
Inductive case: Set x′ = x2, . . . , xn and K ′ = KR(x′). Then we consider each part of the result:

(a) From the inductive hypothesis, we have K ′i
∼= R(n−1

i ). Therefore

Ki =
K ′i−1

⊕
K ′i

∼=
R(n−1

i−1)

⊕
R(n−1

i )

∼= R(n−1
i−1)+(n−1

i ) = R(ni).

(b) We use Definition III.B.2.2 to construct the ∂K1 map from the inductive hypothesis.

∂K1 :
K ′0
⊕
K ′1

(
0 0

x1 ∂
K′
1

)
//

0
⊕
K ′0

⇒ ∂K1 :
R
⊕

Rn−1

( x1 x2 ··· xn ) //
0
⊕
R
⇒ ∂K1 : Rn

( x1 x2 ··· xn ) // R.

The first implication comes from the result in part (a) of the proposition, while the second implication uses
the isomorphism from R⊕Rn−1 to Rn.
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(c) We construct ∂Kn in a similar way as above.

∂Kn :
K ′n−1

⊕
0

(
−∂K

′
n−1 0

x1 0

)
//
K ′n−2

⊕
K ′n−1

⇒ ∂Kn :
R
⊕
0


−(−1)n−2xn

...
−x2
x1


//
Rn−1

⊕
R

⇒ ∂Kn : R


(−1)n−1xn

...
−x2
x1


// Rn.

(d) For each i, we have

∂Ki =

(
−∂K′i−1 0

x1 · id ∂K
′

i

)
.

Then the inductive hypothesis tells us that −∂K′i−1 and ∂K
′

i consist only of 0’s and ±x2,±x3, . . . ,±xn.

Furthermore, x1 · id only consists of 0’s and x1’s. Therefore, ∂Ki only consists of 0’s and ±xi’s for i ∈ [n]. �

Now we consider the question: when is K a resolution? To answer this question, we introduce the
following definition.

def190926b Definition III.B.2.5. A sequence xn, xn−1, . . . , x1 ∈ R is weakly R-regular if:

(1) xn is a non-zero-divisor on R.
(2) xn−1 is a non-zero-divisor on R/ 〈xn〉.
(3) xn−2 is a non-zero-divisor on R/ 〈xn, xn−1〉.

...
(i) xn−i+1 is a non-zero-divisor on R/ 〈xn, . . . , xn−i+2〉.

...
(n) x1 is a non-zero-divisor on R/ 〈xn, . . . , x2〉.

ex190926c Example III.B.2.6. Let A be a commutative ring with identity, and let R = A[X1, . . . , Xd]. Then
X = Xd, . . . , X1 is weakly R-regular. We check the conditions of Definition III.B.2.5:

(1) Xd is a non-zero-divisor on R.
(2) R/ 〈Xd〉 ∼= A[X1, . . . , Xd−1], so Xd−1 is a non-zero-divisor on R/ 〈Xd〉.

Continuing in this fashion, we see that X is weakly R-regular. More generally, if Xi1 , . . . , Xin are distinct
variables in R = A[X1, . . . , Xd], then Xi1 , . . . , Xin is also weakly R-regular.

The following theorem says a free resolution of a ring mod a weakly-regular sequence is the Koszul
complex applied to that sequence.

thm190926d Theorem III.B.2.7. If x = xn, . . . , x1 ∈ R is weakly R-regular, then KR(x) is a free resolution of
R/ 〈x〉.

cor190926e Corollary III.B.2.8. If R = A[X1, . . . , Xd], then KR(X1, . . . , Xd) is a free resolution of R/ 〈X1, . . . , Xd〉 ∼=
A.

Proof of III.B.2.7. We will use induction on n.

Base case: Let n = 1. Then KR(x1) = 0 // R
x1 // R // 0 . Since x1 is a non-zero-divisor on

R, we then have

H1(KR(x1) ∼= Ker R
x1 // R = 0.

Then KR(x1) is a free resolution of H0(KR(x1)) ∼= R/ 〈x1〉 by Lemma III.B.1.3.
Inductive Case: Let x′ = xn, . . . , x2. By definition, x′ is weakly R-regular. The inductive hypothesis

tells us that K ′ = KR(x′) is a free resolution of R/ 〈x′〉. Then we claim that (〈x′〉 : x1) = 〈x′〉.

Proof of claim. By Proposition III.B.1.6, we have (〈x′〉 : x1) ⊇ 〈x′〉. Then we want to show (〈x′〉 : x1) ⊆
〈x′〉. Let α ∈ (〈x′〉 : x1), so x1 · α ∈ 〈x′〉. Then in R/ 〈x′〉, x1α = 0. But x1 is a non-zero-divisor on R/ 〈x′〉
by condition (n) of Definition III.B.2.5, so α = 0 in R/ 〈x′〉. Therefore, α ∈ 〈x′〉.
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Now consider the following free resolutions given by the inductive hypothesis:

(K ′)+ =

x1

��

0 // R //

x1

��

Rn−1 //

x1

��

· · · // Rn−1 //

x1

��

R //

x1

��

R/ 〈x′〉 = R/(〈x′〉 : x1) //
� _

x1

��

0

(K ′)+ = 0 // R // Rn−1 // · · · // Rn−1 // R // R/ 〈x′〉 // 0

By Theorem III.B.1.7, K = Cone( K ′
x1 // K ′ ) is a free resolution of R/ 〈x′〉. �

rmk190926f Remark III.B.2.9. If x = x1, . . . , xn ∈ R is weakly R-regular, then KR(xn, . . . , x1) is a free resolution
of R/ 〈x〉 by Theorem III.B.2.7 and Exercise III.B.5.38.

rmk190926g Remark III.B.2.10. The ranks of the modules in KR(x) are symmetric because of the symmetry in
Pascal’s triangle. This leads us to the next property, called the self-duality of the Koszul complex. Note
that it generalizes the self-duality we observed in Example III.A.5.7.

thm190926h Theorem III.B.2.11 (Self-duality of the Koszul complex). The Koszul complex is self-dual, i.e., KR(x) ∼=
Σn HomR(KR(x), R).

Proof. We will use induction on n.
Base Case: Let n = 1. Then we can directly write down an isomorphism between the complexes KR(x1)

and Σ HomR(KR(x1), R) as follows:

K = KR(x1) = 0 // R
x1 // R // 0

K∗ = HomR(K,R) = 0 // R
x1 // R // 0

ΣK∗ =

∼=
��

0 // R
−x1 //

−1
��

R //

1
��

0

K = 0 // R
x1 // R // 0

Base Case: Let n = 2. Then we can directly write down an isomorphism between the complexes
KR(x1, x2) and Σ2 HomR(KR(x1, x2), R) as follows:

K = KR(x1, x2) = 0 // R
(−yx )

// R2
( x y ) // R // 0

K∗ = HomR(K,R) = 0 // R
( xy )
// R2

(−y x )// R // 0

Σ2K∗ =

∼=

��

0 // R
( xy )
//

−1

��

R2
(−y x )//

(
0 1
−1 0

)
��

R //

1

��

0

K = 0 // R
(−yx )

// R2

( x y )
// R // 0

For both of the above base cases, a diagram chase can check that the diagrams are commutative.
Inductive Case: Suppose that Φ: K ′ = KR(x2, . . . , xn) → Σn−1(K ′)∗ is an isomorphism. Notice that

the following diagram commutes:

K ′
x1 //

∼= Φ

��

K ′

∼= Φ

��
Σn−1(K ′)∗

x1 // Σn−1(K ′)∗.

Then by using Exercise III.B.5.36 and the previous diagram, we have.

K = Cone( K ′
x1 // K ′ )

∼= Cone( Σn−1(K ′)∗
x1 // Σn−1(K ′)∗ )
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By Lemma III.B.2.12, we then get

Cone( Σn−1(K ′)∗
x1 // Σn−1(K ′)∗ ) ∼= Σn−1 Cone( (K ′)∗

x1 // (K ′)∗ )

∼= Σn−1

(
Σ(Cone( K ′

x1 // K ′ ))∗
)

∼= ΣnK∗.

An alternate proof is given later in the chapter (in Theorem III.B.2.17) which does not utilize Lemma
III.B.2.12. �

lem190926i Lemma III.B.2.12. Let Ψ: A→ C be a chain map.

lem190926i.a (a) Define ΣΨ: ΣA→ ΣC, using the same rule as Ψ. Then ΣΨ is a chain map and

Cone(ΣΨ) ∼= Σ Cone(Ψ).

Moreover, inductively applying the result for positive integers n gives

Cone(ΣnΨ) ∼= Σn Cone(Ψ).

lem190926i.b (b) The map Ψ∗ : C∗ → A∗ where (−)∗ = HomR(−, R) is a chain map and

Cone(Ψ∗) ∼= Σ Cone(Ψ)∗.

Sketch of Proof. Consider the following commutative diagram.

C∗ =

Ψ∗

��

(C−n)∗
(∂C1−n)∗

//

Ψ∗−n
��

(C1−n)∗

Ψ∗1−n
��

A∗ = (A−n)∗
(∂A1−n)∗

// (A1−n)∗

This shows that Cone(Ψ∗)n = (C1−n)∗ ⊕ (A−n)∗. A similar computation shows that this is (Σ Cone(Ψ)∗)n.
In the interest of time, we omit the remaining details of the proof. �

The Exterior Basis for the Koszul Complex.

def191001a Definition III.B.2.13. Let x = x1, . . . , xn ∈ R be a weakly R-regular sequence in R. Then L = LR(x)
is the following sequence of R-module homomorphisms, where we label each module with its homological
degree.

0 // R // Rn // · · · // R(ni) // · · · // Rn // R // 0

n+ 1 n i 1 0

A basis for R(ni) = Li is eΛ = eλ1,...,λi where Λ = {λ1, . . . , λi} and 1 ≤ λ1 < · · · < λi ≤ n. We may also
write Λ = {λ1 < · · · < λi} ⊆ [n] := {1, . . . , n}. The differentials of the sequence are given by

∂Li (eλ1,...,λi) =

i∑
j=1

(−1)j−1xjeλ1,...,λ̂j ,...,λi
∈ R( n

i−1)

where eΓ with |Γ| = i− 1 is a basis vector in R( n
i−1) and λ1, . . . , λ̂j , . . . , λi = λ1, . . . , λj−1, λj+1, . . . , λi. For

instance,

∂L2 (epq) = xpeq − xqep,
∂L3 (epqr) = xpeqr − xqepr + xrepq, and

∂L1 (ep) = xpe∅ = xp · 1R.

thm191001b Theorem III.B.2.14. The sequence of R-module homomorphisms L is an R-complex and L ∼= K =
KR(x).
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ex191001c Example III.B.2.15. We give explicitly the R-complex L for sequences of sizes two and three before
proving L is an R-complex.

LR(x, y) = 0 // R
(−yx )

// R2
( x y ) // R // 0

e12
� // xe2 − ye1

e1
� // x

e2
� // y

LR(x, y, z) = 0 // R

(
z
−y
x

)
// R3

(−y −z 0
x 0 −z
0 x y

)
// R3

( x y z ) // R // 0

e123
� // xe23 − ye13 + ze12 e1

� // x

e2
� // y

e3
� // z

e12
� // xe2 − ye1

e13
� // xe3 − ze1

e23
� // ye3 − ze2

Proof of Theorem III.B.2.14. To prove L is and R-complex, it suffices to fix an arbitrary i and
show that we have

(
∂Li−1 ◦ ∂Li

)
(eΛ) = 0 for all subsets Λ satisfying |Λ| = i. To see the argument more

concretely, we first observe(
∂L2 ◦ ∂L3

)
(epqr) = ∂L2 (xpeqr − xqepr + xrepq)

= xp∂
L
2 (eqr)− xq∂L2 (epr) + xr∂

L
2 (epq)

= xp(xqer − xreq)− xq(xper − xrep) + xr(xpeq − xqep)
= 0.

In general we have

(
∂Li−1 ◦ ∂Li

)
(eΛ) = ∂Li−1

 i∑
j=1

(−1)j−1xλjeλ1,...,λ̂j ,...,λi


=

i∑
j=1

(−1)j−1xλj∂
L
i−1(eλ1,...,λ̂j ,...,λi

)

=

i∑
j=1

(−1)j−1xλj

(j−1∑
`=1

(−1)`−1xλ`eλ1,...,λ̂`,...,λ̂j ,...,λi

)
+

 i∑
`=j+1

(−1)`−2xλ`eλ1,...,λ̂j ,...,λ̂`,...,λi


= 0

The last equality holds since every basis vector eλ1,...,λ̂p,...,λ̂q,...,λi
occurs twice in the sum and of opposite

signs. In the case when λp is removed first, the coefficient is (−1)p−1+q−2xλpxλq , and in the case when λq
is removed first, the coefficient is (−1)q−1+p−1xλqxλp .

We prove L ∼= K by induction on n. The base cases n = 2, 3 are done by Example III.B.2.15 and the
case n = 1 is routine. For the inductive step set x′ = x2, . . . , xn, and K ′ = KR(x′) and L′ = LR(x′). By
the induction hypothesis L′ ∼= K ′ and we let Ψ: L′ → K ′ be an isomorphism, which automatically makes
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the following diagram commute.

L′
Ψ
∼=
//

x1

��

K ′

x1

��
L′

Ψ

∼= // K ′

By Exercise III.B.5.36(b) this diagram shows that K = Cone(K ′
x1−→ K ′) ∼= Cone(L′

x1−→ L′). It therefore

suffices to show L ∼= Cone(L′
x1−→ L′). We claim the chain map φ in the diagram

Cone(L′
x1−→ L′)i =

L′i−1

⊕
L′i

(
−∂L

′
i−1 0

x1 ∂L
′

i

)
//

φi

��

L′i−2

⊕
L′i−1

φi−1

��

= Cone(L′
x1−→ L′)i−1

Li // Li−1

is the desired isomorphism, where φi is defined on basis vectors as follows. Basis vectors for L′i−1 ⊕ L′i are

of the form
(
0 eλ1,...,λi

)T
and

(
eγ2,...,γi 0

)T
where 2 ≤ λ1 < · · · < λi ≤ n and 2 ≤ γ2 < · · · < γi ≤ n.

We bound below by 2 since L′ = LR(x′) and we begin our index for Γ = {γ2 < · · · < γi} with 2 since L′i−1

has basis vectors of size i − 1. It suffices to show the diagram above commutes with respect to these basis
vectors. Define φ by the following:

φi

(
0

eλ1,...,λi

)
= eλ1,...,λi and φi

(
eγ2,...,γi

0

)
= e1,γ2,...,γi .

We compute

φi−1

(
∂

Cone(x1)
i

(
0

eλ1,...,λi

))
= φi−1

(
0

∂L
′

i (eλ1,...,λi)

)
= φi−1

(
0∑i

j=1(−1)j−1xλjeλ1,...,λ̂j ,...,λi
)

)

=

i∑
j=1

(−1)j−1xλjφi−1

(
0

eλ1,...,λ̂j ,...,λi

)

=

i∑
j=2

(−1)j−1xλjeλ1,...,λ̂j ,...,λi

= ∂Li (eλ1,...,λi)

= ∂Li

(
φi

(
0

eλ1,...,λi

))
and similarly

φi−1

(
∂

Cone(x1)
i

(
eγ2,...,γi

0

))
= φi−1

(
−∂L′i−1(eγ2,...,γi)
x1eγ2,...,γi

)
= φi−1

(
−
∑i
j=2(−1)jxγjeγ2,...,γ̂j ,...,γi

x1eγ2,...,γi

)

=

i∑
j=2

(−1)j−1xγje1,γ2,...,γ̂j ,...,γi + x1eγ2,...,γi

= ∂
Cone(x1)
i (e1,γ2,...,γi)

= ∂
Cone(x1)
i

(
φi

(
eγ2,...,γi

0

))
,
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so φ is a chain map and by construction it bijectively maps basis vectors to basis vectors. (The basis vector
assignment is 1-1, so it is bijective by the pigeon hole principle.) Therefore φi is bijective for all i ∈ Z and
φ is therefore an isomorphism of R-complexes. �

fact191001d Fact III.B.2.16. If A is an R-complex, then ΣnA is isomorphic to

· · ·
−∂Ai−n+1// Ai−n

−∂Ai−n // Ai−n−1

−∂Ai−n−1// · · · .

The following result was already presented as Theorem III.B.2.11. We give it again for convenience and
present another proof in which we use the exterior basis for K and the dual basis for K∗.

thm191001e Theorem III.B.2.17 (Self-duality of the Koszul complex). Let x = x1, . . . , xn ∈ R be given, and set
K = KR(x) and K∗ = HomR(K,R). Then ΣnK∗ ∼= K.

Alternate Proof. Recall that

HomR(Rt, R) ∼= Rt

e∗1 e1

...
...�oo

e∗t et

with e∗i (ej) = δij and e∗i (
∑
j αjej) = αi. Then we have (K∗)−i =

(
R(ni)

)∗ ∼= R(ni) with dual basis e∗Λ and

e∗Λ(eΓ) =

{
0 if Λ 6= Γ

1 if Λ = Γ,

where |Λ| = i = |Γ|. Note also that

∂K
∗

−i (e∗Λ) =
(
∂Ki+1

)∗
(e∗Λ) = e∗Λ ◦ ∂Ki+1 (III.B.2.17.1) eqn191001b

for Λ ⊆ [n] satisfying |Λ| = i. Let γ ∈ [n] \ Λ, and define s(γ,Λ) to be the number of swaps needed to put
the list γ, λ1, . . . , λi in order. In other words, if λj−1 < γ < λj , then s(γ,Λ) = j − 1.

For example, if n = 9 and Λ = {3 < 5 < 7} and γ = 4, then s(γ,Λ) = 1.

Continuing the proof, we claim that ∂K
∗

−i (e∗Λ) =
∑

γ∈[n]\Λ

(−1)s(γ,Λ)xγe
∗
Λ∪{γ} in K∗i+1 = HomR(Ki+1, R)

with basis e∗Γ for |Γ| = i+ 1. It suffices to show that

∂K
∗

−i (e∗Λ)(eΓ) =
∑

γ∈[n]\Λ

(−1)s(γ,Λ)xγe
∗
Λ∪{γ}(eΓ). (III.B.2.17.2) eqn191003a

First consider the left hand side. By display (III.B.2.17.1) for Γ = {γ1 < · · · < γi+1}, we have

∂K
∗

−i (e∗Λ)(eΓ) = e∗Λ(∂Ki+1(eΓ))

= e∗Λ

i+1∑
j=1

(−1)j−1xγjeΓ\{γj}


=

i+1∑
j=1

(−1)j−1xγje
∗
Λ(eΓ\{γj})

=

{
0 if Λ 6⊆ Γ

(−1)j−1xγj if Γ \ {γj} = Λ and Λ ⊆ Γ
.

Next consider the right hand side of display (III.B.2.17.2). If Λ 6⊆ Γ, then Λ ∪ {γ} 6= Γ for all γ ∈ [n] \Λ, so
e∗Λ∪{γ}(eΓ) = 0. Therefore, the right hand side of (III.B.2.17.2) is 0 as well. If Λ ⊆ Γ, then there is a unique

γj ∈ [n] \ Λ such that Λ ∪ {γj} = Γ. Then the right hand side of (III.B.2.17.2) is equal to (−1)s(γj ,Λ)xγj .
Notice that Λ = {γ1 < · · · < γj−1 < γj+1 < · · · }, so s(γj ,Λ) = j − 1.
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Now we want to show that following diagram commutes:

(K∗)−i = (ΣnK∗)n−i
∂ΣnK∗
n−i

−∂K
∗
−i

//

Φn−i

��

(ΣnK∗)n−i−1 = (K∗)−(i+1)

Φn−i−1

��
Kn−i

∂Kn−i // Kn−i−1.

A diagram chase of the above diagram follows:

e∗Λ
� //

_

��

−
∑

γ∈[n]\Λ

(−1)s(γ,Λ)xγe
∗
Λ∪{γ}

_

��
−

∑
γ∈[n]\Λ

(−1)s(γ,Λ)+
∑
λ∈Λ\{γ} λxγe[n]\(Λ∪{γ})

(−1)
∑
λ∈Λ λe[n]\Λ

� // (−1)
∑
λ∈Λ λ

∑
γ∈[n]\Λ

(−1)t(γ,Λ)−1xγe([n]\Λ)\{γ}

Here, t(γ,Λ) is the position of γ in [n] \ Λ. Observe that s(γ,Λ) + t(γ,Λ) = γ. Consider the example from
earlier in the proof. For instance, if n = 9 and Λ = {3 < 5 < 7} and γ = 4, then we have t(γ,Λ) = 3 because
[n] \ Λ = {1 < 2 < 4 < 6 < 8 < 9}. Then we can see that s(γ,Λ) + t(γ,Λ) = 4 = γ.

Now we need to check that the two lines in the bottom right corner of the above diagram are equal. It
suffices to show that the powers of (−1) are congruent modulo 2:

s(γ,Λ) +
∑

λ∈Λ\{γ}

λ+ 1
?≡ t(γ,Λ)− 1 +

∑
λ∈Λ

λ (mod 2)

s(γ,Λ) + t(γ,Λ)
?≡
∑
λ∈Λ

λ−
∑

λ∈Λ\{γ}

λ (mod 2)

γ
X≡ γ (mod 2).

Therefore, this is a chain map. To determine whether Φ is an isomorphism, it suffices to show that Φ is
one-to-one and onto. Since Φ maps the dual basis of ΣnK∗ to the exterior basis of K and the bases are the
same size, Φ describes a basis bijection. Therefore, the induced map is an isomorphism. �

III.B.3. Application: Depth Sensitivity of the Koszul Complex
section063021i

In this chapter, assume that R is noetherian.

rmk191003a Remark III.B.3.1. If x = x1, . . . , xn ∈ R is weakly R-regular, then K = KR(x) is a resolution of R/ 〈x〉.
Therefore, Hi(K) = 0 for all i 6= 0 and H0(K) ∼= R/(x).

The question that comes up now is what happens when x is not weakly R-regular? In other words, which
homology modules still vanish when x in not weakly R-regular? The answer is not immediately obvious, but
we will see that Hi(K

R(x)) may be non-zero for some i > 0. For example, consider the Koszul complex on
one element:

KR(x) = 0 // R
x // R // 0.

Then H1(KR(x)) ∼= Ker R
x // R = 0 if and only if x is a non-zero-divisor on R. This suggests that there

is a connection between the existence of weakly R-regular sequences and vanishing of homology modules of
KR(x). As another example, we consider the Koszul complex on two elements below.

ex191003b Example III.B.3.2. Let x, y ∈ R and set K = KR(x, y) and K ′ = KR(y). Assume that y is a non-zero-
divisor on R, then Hi(K

′) = 0 for all i > 0. We consider what happens to the homology modules of K if x
is a zero-divisor on R/ 〈y〉. We have the following short exact sequence by Theorem III.A.4.20:

0 // K ′ // K // ΣK ′ // 0.
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We consider the long exact sequence of homology modules that arises from the above short exact sequence.
In particular, we consider the case for i ≥ 2 and separately the case for i = 1. For i ≥ 2, we have

· · · // Hi(K
′)︸ ︷︷ ︸

=0

// Hi(K) // Hi−1(K ′)︸ ︷︷ ︸
=0

x // Hi−1(K ′) // · · · .

Therefore, by Fact III.A.2.2c, we have Hi(K) = 0. For i = 1, we have

· · · // H1(K ′)︸ ︷︷ ︸
=0

// H1(K) // H0(K ′)
x //

∼=

��

H0(K ′) //

∼=

��

· · ·

R/ 〈y〉 x

not 1-1
// R/ 〈y〉 .

Then H1(K) ∼= Ker R/ 〈y〉 x // R/ 〈y〉 6= 0, since x is a zero-divisor on R/ 〈y〉.

rmk191003c Remark III.B.3.3. The point of this chapter is that we can say exactly which s ∈ N satisfy Hi(K) = 0
for all i > s. The method of doing so is in terms of “depth”. Conversely, if we know which s satisfies
Hi(K) = 0 for all i > s, then we can calculate the depth.

To define depth, we need the following theorem which we state without proof.

thm191003d Theorem III.B.3.4 (Rees). Let I � R.

thm191003d.a (a) The following are equivalent:
(i) There exists a sequence y = y1, . . . , ym ∈ I that is weakly R-regular, and
(ii) ExtiR(R/I,R) = 0 for all i < m.

thm191003d.b (b) There exists a maximal weakly R-regular sequence in I. In other words, there exists a weakly R-regular
sequence y = y1, . . . , ym ∈ I such that for all x ∈ I, the sequence y1, . . . , ym, x is not weakly R-regular.

thm191003d.c (c) Every maximal weakly R-regular sequence has the same length and the length is

m = min
{
i ≥ 0

∣∣ ExtiR(R/I,R) 6= 0
}
.

defn191003e Definition III.B.3.5. The depth of I in R, denoted depth(I,R), is the length of any maximal weakly
R-regular sequence in I � R. When the ring and the ideal are understood, we will denote the depth as δ.

ex191003f Example III.B.3.6. We verify the conclusion of Theorem III.B.3.4(c) in the special case ofR = A[X1, . . . , Xd],
where A is a nonzero noetherian commutative ring with identity, and I = 〈X1, . . . , Xn〉. Notice that I is
weakly R-regular. Then K = KR(X1, . . . , Xn) is a free resolution of R/I. Therefore

ExtiR(R/I,R) = H−i(K
∗) = Hn−i(Σ

nK∗) ∼= Hn−i(K) =

{
0 if n > i

R/I if n = i.

The isomorphism above comes from the self-duality property of K. Then we can see that

min
{
i ≥ 0

∣∣ ExtiR(R/I,R) 6= 0
}

= n,

which is also the length of the maximal weakly R-regular sequence X1, . . . , Xn ∈ I.

rmk191008a Remark III.B.3.7. One can see δ visually as follows:

Ext0
R(R/I,R),Ext1

R(R/I,R), . . . ,Extδ−1
R (R/I,R)︸ ︷︷ ︸

=0

,ExtδR(R/I,R)︸ ︷︷ ︸
6=0

.

So one may think of δ as the number of initial vanishing Ext modules.

thm191008b Theorem III.B.3.8 (Auslander-Buchsbaum). Let x = x1, . . . , xn ∈ I such that I = 〈x〉 � R and assume
y = y1, . . . , ym ∈ I is weakly R-regular. Then Hi

(
KR(x)

)
= 0 for all i > n−m and

Hn−m
(
KR(x)

) ∼= ExtmR (R/I,R).

cor191008c Corollary III.B.3.9 (Depth-sensitivity of the Koszul complex). In the context of Theorem III.B.3.8
we have Hi

(
KR(x)

)
= 0 for all i > n− δ and Hn−δ

(
KR(x)

)
6= 0, i.e.,

δ = n−max
{
i ≥ 0

∣∣Hi

(
KR(x)

)
6= 0

}
.
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rmk191008d Remark III.B.3.10. One can once again see δ visually as follows:

Hn

(
KR(x)

)
, Hn−1

(
KR(x)

)
, . . . ,Hn−δ+1

(
KR(x)

)︸ ︷︷ ︸
=0

, Hn−δ
(
KR(x)

)︸ ︷︷ ︸
6=0

.

So one can think of δ as the number of “initial” vanishings of Hi

(
KR(x)

)
when counting from degree n.

ex191008e Example III.B.3.11. With this example we verify the conclusions of Theorem III.B.3.4 and Corol-
lary III.B.3.9 for the ideal I = 〈XY,XZ, Y Z〉 � R where R = k[X,Y, Z], i.e., we will show

δ = depth(I,R) = 2,

Ext0
R(R/I,R) = Ext1

R(R/I,R) = 0 and Ext2
R(R/I,R) 6= 0, and

H3 (K) = H2 (K) = 0 and H1 (K) 6= 0

where we set K = KR(XY,XZ, Y Z).
To show that δ = 2 we build a weakly regular sequence. Begin with the non-zero-divisor XY ∈ I. Then

R

〈XY 〉
∼=
k[X,Y ]

〈XY 〉
[Z]

and since Z,X+Y ∈ I are each non-zero-divisors in the above quotient and I is an ideal, we know XZ+Y Z =
(X + Y )Z ∈ I is also a non-zero-divisor. One can then check that XY,XZ + Y Z is a maximal weakly R-
regular sequence in I, so δ = 2.

To compute Ext modules we first need a projective resolution of R/I:

P = 0 // R2

(−Z −Z
Y 0
0 X

)
∂P2

// R3
(XY XZ Y Z )

∂P1

// R // 0.

Taking the dual we obtain

P ∗ ∼= 0 // R

(
XY
XZ
Y Z

)
(∂P1 )

∗
// R3

(−Z Y 0
−Z 0 X

)
(∂P2 )

∗
// R2 // 0.

0 −1 −2

Since each entry in the matrix defining
(
∂P1
)∗

is a non-zero-divisor on R, we have

Ext0
R(R/I,R) ∼= Ker

XY
XZ
Y Z

= 0

so P ∗ is exact in degree 0. Alternatively, one can prove this using the isomorphisms

Ext0
R(R/I,R) ∼= HomR(R/I,R)

(1)∼= {r ∈ R | rI = 0} (2)
= 0,

where (2) holds since I contains a non-zero-divisor and the isomorphism in (1) is the evaluation map φ 7→ φ(1).
In degree −2 we observe that

Ext2
R(R/I,R) =

R2〈(−Z
−Z
)
, ( Y0 ) , ( 0

X )
〉 .

We also note that 〈(
−Z
−Z

)
,

(
Y
0

)
,

(
0
X

)〉
⊆ m⊕m ⊆ R⊕R = R2

where m = 〈X,Y, Z〉 � R is a maximal ideal. Thus there exists a surjection

R2〈(−Z
−Z
)
, ( Y0 ) , ( 0

X )
〉 � R⊕R

m⊕m
∼=
(
R

m

)2

∼= k2 6= 0

where the inequality holds because k is a field. Hence, P ∗ is not exact in this degree.
To show P ∗ is exact in degree −1 it suffices to show that Ker

(
∂P2
)∗ ⊆ Im

(
∂P1
)∗

. We observe that if(
f g h

)T ∈ Ker
(
∂P2
)∗

, then

Y g = Zf = Xh (III.B.3.11.1) eqn191008a
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which implies there exist f1, g1, h1 ∈ R such that

f = XY f1, g = XZg1, and h = Y Zh1.

Substituting this into (III.B.3.11.1) we obtain

XY Zg1 = XY Zf1 = XY Zh1

which implies f1 = g1 = h1. Hence fg
h

 = f1

XYXZ
Y Z

 ∈ Im
(
∂P1
)∗

so P ∗ is exact in degree −1.
We now study the following Koszul complex.

0 // R

(
Y Z
−XY
XY

)
∂K3

// R3

(
−XZ −Y Z 0
XY 0 −Y Z

0 XY XZ

)

∂K2

// R3
(XY XZ Y Z )

∂K1

// R // 0

3 2 1

For exactness in degree 3, argue as in the computation of Ext0
R(R/I,R). To prove exactness in degree

2 it suffices to show Ker ∂K2 ⊆ Im ∂K3 and this argument is analogous to the argument used to compute
Ext1

R(R/I,R).
To see that H1 (K) is non-zero, we observe

Ker ∂K1 = KerXY XZ Y Z

= Im ∂P2

=

〈−ZY
0

 ,

−Z0
X

〉

)

〈−XZXY
0

 ,

−Y Z0
XY

 ,

 0
−Y Z
XZ

〉
= Im ∂K2 .

ex191008f Example III.B.3.12. Set R = k[X,Y ]/ 〈XY 〉 and define I = 〈x, y〉 � R where x = X ∈ R and
y = Y ∈ R. We again will verify the conclusions of Theorem III.B.3.4 and Corollary III.B.3.9. One can
conclude δ = 1 by verifying that x+ y is a maximal weakly R-regular sequence in I. It remains to show that

Ext0
R(R/I,R) = 0 and Ext1

R(R/I,R) 6= 0,

and
H2(K) = 0 and H1(K) 6= 0,

where we set K = KR(x, y). Check that a (truncated) projective resolution of R/I is

P = · · ·

(
x 0
0 y

)
// R2

(
y 0
0 x

)
// R2

(
x 0
0 y

)
// R2

(
y 0
0 x

)
// R2

( x y ) // R // 0

and applying HomR(−, R) we obtain

P ∗ = 0 // R
( xy )

(∂P1 )
∗
// R2

(
y 0
0 x

)
(∂P2 )

∗
// R2

(
x 0
0 y

)
// R2

(
y 0
0 x

)
// R2

(
x 0
0 y

)
// · · · .

0 −1

Compare this with P to conclude that P ∗ is exact in every degree below −1. Since x+ y ∈ I is a non-zero-
divisor we have

Ext0
R(R/I,R) = HomR(R/I,R) = 0.

In degree 1 we have

Ker
(
∂P2
)∗

= Ker
y 0
0 x

= Im
x 0
0 y

=

〈(
x
0

)
,

(
0
y

)〉
)
〈(

x
y

)〉
= Im

(
∂P1
)∗
,
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so Ext1
R(R/I,R) 6= 0.

The Koszul complex K = KR(x, y) is familiar.

0 // R
(−yx )

∂K2

// R2
( x y )

∂K1

// R // 0

2 1 0

One can show H2(K) = 0 by showing that Ker ∂K2 = 0 as we did in the computation of Ext0
R(R/I,R). We

see that H1(K) 6= 0 since

Ker ∂K1 = Im
y 0
0 x

=

〈(
y
0

)
,

(
0
x

)〉
)
〈(
−y
x

)〉
= Im ∂K2 .

Sketch of Proof of Theorem III.B.3.8. Let K = KR(x). To prove the result, we would induct
on m. In the interest of time, we will only show the base cases for m = 0 and m = 1; the inductive step
follows like the m = 1 case.

First consider the base case for m = 0. Then we have

Hn(K) ∼= Ker R


±xn
...
−x2
x1


∂Kn

// Rn

= {r ∈ R | xir = 0 ∀ i = 1, . . . , n}
= {r ∈ R | Ir = 0}
∼= HomR(R/I,R)

∼= Ext0
R(R/I,R).

The isomorphism from HomR(R/I,R) to {r ∈ R | Ir = 0} is given by sending φ ∈ HomR(R/I,R) to φ(1).
This gives us our result for m = 0.

Next consider the base case for m = 1. Notice that Hn(K) ∼= HomR(R/I,R) by the m = 0 case. (In the
inductive step, this observation would be replaced by the inductive hypothesis.) By Theorem III.B.3.4(a)
and since m = 1, we get HomR(R/I,R) ∼= Ext0

R(R/I,R) = 0. Now consider the following short exact
sequence with R = R/ 〈y1〉:

0 // R
y1 // R // R // 0. (III.B.3.12.1) eqn191010a

This induces the following short exact sequence on Koszul complexes, with K = KR(x):

0 // K
y1 // K // K // 0.

By Theorem III.A.4.16, this induces the following long exact sequence of homologies:

0 // Hn(K)︸ ︷︷ ︸
=0

y1 // Hn(K)︸ ︷︷ ︸
=0

// Hn(K)

// Hn−1(K)
y1=0 // Hn−1(K) // · · · .

By Exercise III.B.5.40, the assumption y1 ∈ 〈x〉 implies y1 · Hn−1(K) = 0, which tells us the map in the
second row of the above sequence is the zero map. Therefore by Fact III.A.2.2(d), the above sequence
simplifies to

0 // Hn(K)
∼= // Hn−1(K) // 0.
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Then Hn−1(K) ∼= Hn(K) ∼= HomR(R/I,R) ∼= HomR(R/I,R). Now consider the long exact sequence in
ExtiR(R/I,−) associated to equation III.B.3.12.1:

0 // HomR(R/I,R)︸ ︷︷ ︸
=0

y1 // HomR(R/I,R)︸ ︷︷ ︸
=0

// HomR(R/I,R)

// Ext1
R(R/I,R)

y1=0 // Ext1
R(R/I,R) // · · · .

As in the previous long exact sequence, Fact III.A.2.2(d) implies that Ext1
R(R/I,R) ∼= HomR(R/I,R), so

Ext1
R(R/I,R) ∼= Hn−1(K). This gives us our result for m = 1. �

rmk191010a Remark III.B.3.13. Let δ = depth(I,R). Then from Theorem III.B.3.4 and Theorem III.B.3.8, we have

=0︷ ︸︸ ︷
Ext0

R(R/I,R), . . . ,Extδ−1
R (R/I,R),

6=0︷ ︸︸ ︷
ExtδR(R/I,R),

?︷ ︸︸ ︷
Extδ+1

R (R/I,R), . . .

Hn(KR(x)), . . . ,Hn−m+1(KR(x))︸ ︷︷ ︸
=0

, Hn−m(KR(x))︸ ︷︷ ︸
6=0

, Hn−m−1(KR(x)), . . .︸ ︷︷ ︸
?

.

We would like to know what happens to the end of each of the sequences in the above remark. The
following fact tells us that all homologies past δ are nonzero. The proof of this fact requires some localization
and Nakayama’s Lemma, which are outside the scope of this course.

fact191010b Fact III.B.3.14 (Rigidity of Koszul homology). Let I = 〈x〉 � R and δ = depth(I,R). Then Hi(K
R(x)) 6=

0 for all i = 0, . . . , δ.

However, there is not as clear-cut an answer for the sequence in ExtiR(R/I,R) for i > δ. The following
example shows two different cases.

ex191010c Example III.B.3.15. Let X = X1, . . . , Xm and Y = Y1, . . . , Yn.

(a) Consider R = k[X,Y]/ 〈X〉2. Set xi = Xi ∈ R and yj = Yj ∈ R and I = 〈x,y〉. Notice that y is a

maximal weakly R-regular sequence in I so δ = n because R ∼= k[X]

〈X〉2 [Y]. Then:

ExtiR(R/I,R) :

=0︷ ︸︸ ︷
Ext0

R(R/I,R), . . . ,Extn−1
R (R/I,R),

6=0︷ ︸︸ ︷
ExtnR(R/I,R),

6=0︷ ︸︸ ︷
Extn+1

R (R/I,R), . . . ,Extm+n
R (R/I,R), . . .

Hi(K
R(x,y)) : Hm+n(KR(x,y)), . . . ,Hm+1(KR(x,y))︸ ︷︷ ︸

=0

, Hm(KR(x,y))︸ ︷︷ ︸
6=0

, Hm−1(KR(x,y)), . . . ,H0(KR(x,y))︸ ︷︷ ︸
6=0

Therefore, we have an example of a sequence in Ext in which ExtiR 6= 0 for all i ≥ δ.
(b) Consider R = k[X,Y]/

〈
X2

1 , . . . , X
2
m

〉
. Set xi = Xi ∈ R and yj = Yj ∈ R and I = 〈x,y〉. Notice that y

is a maximal weakly R-regular sequence in I so δ = n because R ∼= k[X]

〈X2
1 ,...,X

2
m〉

[Y]. Then we have the

following.

ExtiR(R/I,R) :

=0︷ ︸︸ ︷
Ext0

R(R/I,R), . . . ,Extn−1
R (R/I,R),

6=0︷ ︸︸ ︷
ExtnR(R/I,R),

=0︷ ︸︸ ︷
Extn+1

R (R/I,R), . . . ,Extm+n
R (R/I,R), . . .

Hi(K
R(x,y)) : Hm+n(KR(x,y)), . . . ,Hm+1(KR(x,y))︸ ︷︷ ︸

=0

, Hm(KR(x,y))︸ ︷︷ ︸
6=0

, Hm−1(KR(x,y)), . . . ,H0(KR(x,y))︸ ︷︷ ︸
6=0

Therefore, we also have an example of a sequence in Ext in which ExtiR = 0 for all i > δ.

The next result shows one more connection between depth and the topic of this course.

thm191010d Theorem III.B.3.16 (Auslander-Buchsbaum). Let R = k[X1, . . . , Xd] and f = f1, . . . , fn ∈ R, where
each fi is a non-constant homogeneous polynomial. Let I = 〈f〉 � R and R = R/I and xi = Xi ∈ R and
m = 〈x〉 � R and ∆ = depth(m,R).

(a) There exists a free resolution 0→ Fd−∆ → Fd−∆−1 → · · · → F0 → R→ 0.
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(b) If 0 → Gn → · · · → G0 → R → 0 is a free resolution over R, then n ≥ d − ∆. Furthermore,
0 → Ker ∂Gd−∆−1 → Gd−∆−1 → · · · → G0 → R → 0 is exact and Ker ∂Gd−∆−1 is projective. By a result

of Serre, Ker ∂Gd−∆−1 is also free.

The slogan here is that the “projective dimension” of R over R is dim(R)− depth
(
I,R

)
= d−∆.

III.B.4. The Taylor Resolution
section063021j

In this chapter, assume that R = k[X1, . . . , Xd]. We want to find explicit resolutions of R/I where I is
a monomial ideal.

rec191010e Recall III.B.4.1. A monomial in R is Xe = Xe1
1 · · ·X

ed
d ∈ R, where e = (e1, . . . , ed) ∈ Nd. It is

noteworthy that our definition of a monomial requires the coefficient to be 1.

def191010f Definition III.B.4.2. A monomial ideal in R is an ideal generated by monomials. We will use the
notation JRK to represent the set of all monomials in R and JIK = I ∩ JRK to represent the set of all
monomials in I.

ex191010g Example III.B.4.3. (a) The ideal X = m = 〈X〉 = 〈X1, . . . , Xd〉 � R is a monomial ideal.
(b) The ideal 〈XY,XZ, Y Z〉 � R = k[X,Y, Z] is a monomial ideal.

def191010h Definition III.B.4.4 (Taylor resolution). Let f = f1, . . . , fn ∈ JRK. Then the Taylor resolution of f is

T = TR(f) = (0 // R
∂Tn // Rn

∂Tn−1 // · · ·
∂Ti+1 // R(ni)

∂Ti // · · ·
∂T2 // Rn

∂T1 // R // 0)

where the basis is the same as the exterior basis for the Koszul complex

{ej1,...,ji | 1 ≤ j1 < · · · < ji ≤ n} ⊂ R(ni) = Ti

and

∂Ti (ej1,...,ji) =

i∑
p=1

(−1)p−1 lcm(fj1 , . . . , fji)

lcm(fj1 , . . . , f̂jp , . . . , fji)
ej1,...,̂jp,...,ji .

prop191010i Proposition III.B.4.5. The Taylor resolution TR(f) is an R-complex which satisfies H0(TR(f)) ∼=
R/ 〈f〉.

ex191010j Example III.B.4.6. We give the following two examples of Taylor resolutions. The first is familiar.

(a) If f = X1, . . . , Xn, then TR(f) = KR(X1, . . . , Xn), since

lcm(Xj1 , . . . , Xji)

lcm(Xj1 , . . . , X̂jp , . . . , Xji)
=
Xj1 · · ·Xjp · · ·Xji

Xj1 · · · X̂jp · · ·Xji

= Xjp .

(b) Let I = 〈XY,XZ, Y Z〉. Then since I is generated by three elements, the outline for the Taylor resolution
of I is

TR(XY,XZ, Y Z) : (0 // R
∂T3 // R3

∂T2 // R3
∂T1 // R // 0).

Next, we determine ∂Tj for j = 1, 2, 3. For ∂T1 , it is true in general that ei ∈ Rn maps to fi ∈ R for all
i, since

ei 7→ (−1)1−1 lcm(fi)

lcm( )
e∅ = 1 · fi

1
· 1 = fi.

Therefore, we have ∂T1 =
(
XY XZ Y Z

)
. For ∂T2 , we see the following:

e12 7→
lcm(f1, f2)

lcm(f2)
e2 −

lcm(f1, f2)

lcm(f1)
e1 =

XY Z

XZ
e2 −

XY Z

XY
e1 = Y e2 − Ze1 =

−ZY
0.


e13 7→

lcm(f1, f3)

lcm(f3)
e3 −

lcm(f1, f3)

lcm(f1)
e1 =

XY Z

Y Z
e3 −

XY Z

XY
e1 = Xe3 − Ze1 =

−Z0
X.


e23 7→

lcm(f2, f3)

lcm(f3)
e3 −

lcm(f2, f3)

lcm(f2)
e2 =

XY Z

Y Z
e3 −

XY Z

XZ
e2 = Xe3 − Y e2 =

 0
−Y
X.
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Therefore, we have

∂T2 =

−Z −Z 0
Y 0 −Y
0 X X

 .

For ∂T3 , we see that

e123 7→
lcm(f1, f2, f3)

lcm(f2, f3)
e23 −

lcm(f1, f2, f3)

lcm(f1, f3)
e13 +

lcm(f1, f2, f3)

lcm(f1, f2)
e12

=
XY Z

XY Z
e23 −

XY Z

XY Z
e13 +

XY Z

XY Z
e12 = e23 − e13 + e12 =

 1
−1
1

 .

Therefore, we have ∂T3 =
(
1 −1 1

)T
.

rmk191017a Remark III.B.4.7. We will see later that TR(f) is always a resolution of R/ 〈f〉 (under monomial as-
sumptions). However, Examples III.B.3.11 and III.B.4.6 show that TR(f) might not be minimal.

Proof of Proposition III.B.4.5. We first check that ∂Ti−1(∂Ti (ej1,...,ji)) = 0 for all i. We have

∂Ti−1(∂Ti (ej1,...,ji)) =
i∑

p=1

(−1)p−1 lcm(fj1 , . . . , fji)

lcm(fj1 , . . . , f̂jp , . . . , fji)
∂Ti−1(ej1,...,̂jp,...,ji)

=

i∑
p=1

(−1)p−1 lcm(fj1 , . . . , fji)

lcm(fj1 , . . . , f̂jp , . . . , fji)

[
p−1∑
q=1

(−1)q−1 lcm(fj1 , . . . , f̂jp , . . . , fji)

lcm(fj1 , . . . , f̂jq , . . . , f̂jp , . . . , fji)
ej1,...,̂jq,...,̂jp,...,ji

+

i∑
q=p+1

(−1)q
lcm(fj1 , . . . , f̂jp , . . . , fji)

lcm(fj1 , . . . , f̂jp , . . . , f̂jq , . . . , fji)
ej1,...,̂jp,...,̂jq,...,ji

]
Then the coefficients of the two inner sums exactly cancel, as in the proof of Theorem III.B.2.14. Therefore,
TR(f) is an R-complex.

Also, we have

H0(T ) =
Ker R // 0

Im Rn
( f1,...,fn )

∂T1

// R

=
R

〈f〉

which is the desired result. �

thm191017b Theorem III.B.4.8. The Taylor resolution TR(f) is a free resolution of R/ 〈f〉.

Proof. We will use induction on n. First consider the base case for n = 1, where

TR(f) = (0 // R
f1 // R // 0).

Since 0 6= f1 ∈ R = k[X], then f1 is a non-zero-divisor of R. Therefore, Hi(T ) = 0 for all i 6= 0. As in
Lemma III.B.1.3, TR(f) is a free resolution of R/ 〈f〉.

Now assume that the Taylor resolution on sequences of length n − 1 resolve appropriately. Set f ′ =
f2, . . . , fn and I ′ = 〈f ′〉. We consider the colon ideal as in Example III.B.1.5c

(I ′ : f1) = (〈f ′〉 : f1) = {g ∈ R | gf1 ∈ 〈f ′〉} = 〈g2, . . . , gn〉 ,

where gi = X(ai−a1)+ = X
(ai1−a11)+

1 · · ·X(aid−a1d)+

d and where

(aij − a1j)+ =

{
0 if aij − a1j ≤ 0

aij − a1j if aij − a1j ≥ 0.

Set g = g2, . . . , gn, so 〈g〉 = (I ′ : f1). By the inductive hypothesis, TR(f ′) is a free resolution of R/ 〈f ′〉 and
TR(g) is a free resolution of R/ 〈g〉. Our goal from here is to construct a chain map Ψ+ : TR(g)+ → TR(f)+

such that Ψ−1 is the map R/ 〈g〉 = R/(I ′ : f1)
f1−→ R/I ′ = R/ 〈f ′〉 and Cone(Ψ) ∼= TR(f). Then by
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Theorem III.B.1.7, Cone(Ψ) will be a free resolution of R/ 〈f〉. Our setup for Ψ comes from filling in the
question mark in the following diagram:

TR(g)+ =

Ψ+

��

· · · // Rn //

?

��

R //

f1

��

R/ 〈g〉 //
� _

f1

��

0

TR(f ′)+ = · · · // Rn // R // R/I ′ // 0.

For example, let f = X2, XY, Y 2. Then f ′ = XY, Y 2 and (〈f ′〉 : f1) = (
〈
XY, Y 2

〉
: X2) =

〈
Y, Y 2

〉
, so

g = Y, Y 2. Then

TR(Y, Y 2)+ =

Ψ+

��

0 // R

(
−Y
1

)
//

(∗∗)

��

R2
(Y Y 2 )//

(∗)
��

R
π //

X2

��

R/ 〈g〉 //
� _

X2

��

0

TR(XY, Y 2)+ = 0 // R (
−Y
X

)// R2

(XY Y 2 )
// R

τ // R/ 〈f ′〉 // 0.

In order to determine (∗) and (∗∗), we chase the respective parts of the above diagram in order to make the
diagram commute. For (∗), we have

e2
� //

_

��

Y_

��

e3
� //

_

��

Y 2
_

��
Xe2

� // X2Y X2e3
� // X2Y 2

e2
� // XY, e3

� // Y 2.

Therefore (∗) =
(
X 0
0 X2

)
makes the diagram commute. For (∗∗), we have

e23
� //

_

��

e3 − Y e2_

��
Xe23

� // X2e3 −XY e2

e23
� // Xe3 − Y e2.

Therefore (∗∗) = X makes the diagram commute.
Continuing the proof, we prove two claims.

Claim.

gj =
lcm(f1, fj)

f1
. (III.B.4.8.1) eqn191022a

Proof. We prove this claim by comparing the exponents of Xq on each side of the equation. The
exponent for Xq on the right hand side is max(a1q, ajq) − a1q, while the exponent for Xq on the left hand
side is (ajq − a1q)+. There are two cases:

If ajq ≥ a1q, then max(a1q, ajq)− a1q = ajq − a1q = (ajq − a1q)+

If ajq ≤ a1q, then max(a1q, ajq)− a1q = a1q − a1q = 0 = (ajq − a1q)+

This proves the first claim. X

Claim.

f1 · lcm(gj2, . . . , gji) = lcm(f1, fj2, . . . , fji). (III.B.4.8.2) eqn191022b
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Proof. Using Claim III.B.4.8.1, we have

f1 · lcm(gj2, . . . , gji) = f1 · lcm

(
lcm(f1, fj2)

f1
, . . . ,

lcm(f1, fji)

f1

)
=
f1

f1
· lcm (lcm(f1, fj2), . . . , lcm(f1, fji))

= lcm(f1, fj2, . . . , fji).

This proves the second claim. X

Now we define

Ψi(ej1,...,ji) =
f1 · lcm(gj1 , . . . , gji)

lcm(fj1 , . . . , fji)
ej1,...,ji .

By Claim III.B.4.8.2, the coefficients of the above definition are

f1 · lcm(gj1 , . . . , gji)

lcm(fj1 , . . . , fji)
=

lcm(f1, fj1 , . . . , fji)

lcm(fj1 , . . . , fji)
,

which means they are elements of R. We want to show that Ψ is a chain map and that Cone(Ψ) ∼= TR(f).
In order to check that Ψ is a chain map, consider the following diagram:

R(ni)
∂
TR(g)
i //

Ψi

��

R( n
i−1)

Ψi−1

��

R(ni)
∂
TR(f′)
i // R( n

i−1).

A diagram chase of the above diagram follows:

ej1,...,ji
� //

_

��

i∑
p=1

(−1)p−1 lcm(gj1 ,...,gji )

lcm(gj1 ,...,ĝjp ,...,gji )
ej1,...,ĵp,...,ji

_

��
i∑

p=1

(−1)p−1 lcm(gj1 ,...,gji )

lcm(gj1 ,...,ĝjp ,...,gji )
· f1·lcm(gj1 ,...,ĝjp ,...,gji )

lcm(fj1 ,...,f̂jp ,...,fji )
ej1,...,ĵp,...,ji

f1·lcm(gj1 ,...,gji )

lcm(fj1 ,...,fji )
ej1,...,ji

� // f1·lcm(gj1 ,...,gji )

lcm(fj1 ,...,fji )

i∑
p=1

(−1)p−1 lcm(fj1 ,...,fji )

lcm(fj1 ,...,f̂jp ,...,fji )
ej1,...,ĵp,...,ji .

Notice that once we cancel factors in both sums in the bottom right corner, we see that they are equal.
Therefore, Ψ is a chain map.

In order to check that Cone(Ψ) ∼= TR(f), consider the following diagram:

Cone(Ψ)i =

Φi

��

TR(g)i−1

⊕
TR(f ′)i

−∂TR(g)
i−1 0

Ψi−1 ∂
TR(f′)
i


//
TR(g)i−2

⊕
TR(f ′)

= Cone(Ψ)i−1

Φi−1

��
TR(f)i = R(ni)

∂
TR(f)
i // R( n

i−1) = TR(f)i−1

where Φi is defined on basis vectors as

Φi

(
0

ej1,...,ji

)
= ej1,...,ji , and

Φi

(
ej2,...,ji

0

)
= e1,j2,...,ji .
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We now show that Φ is a chain map by checking commutativity of the above diagram on the basis vectors
for Cone(Ψ):(

0
ej1,...,ji

)
� //

_

��

(
0

∂
TR(f ′)
i (ej1,...,ji)

)
=

i∑
p=1

(−1)p−1 lcm(fj1 ,...,fji )

lcm(fj1 ,...,f̂jp ,...,fji )

(
0

ej1,...,ĵp,...,ji

)
_

��

ej1,...,ji
� //

i∑
p=1

(−1)p−1 lcm(fj1 ,...,fji )

lcm(fj1 ,...,f̂jp ,...,fji )
ej1,...,ĵp,...,ji ,

and

(
ej2,...,ji

0

)
� //

_

��

(
∂
TR(g)
i−1 (ej2,...,ji)
Ψi−1(ej2,...,ji)

)
=

[
−

i∑
p=2

(−1)p
lcm(gj2 ,...,gji )

lcm(gj2 ,...,ĝjp ,...,gji )

(
ej2,...,ĵp,...,ji

0

)]
+

[
f1·lcm(gj2 ,...,gji )

lcm(fj2 ,...,fji )

(
0

ej2,...,ji

)]
_

��[
i∑

p=2

(−1)p−1 lcm(gj2 ,...,gji )

lcm(gj2 ,...,ĝjp ,...,gji )
e1,j2,...,ĵp,...,ji

]
+
[
f1·lcm(gj2 ,...,gji )

lcm(fj2 ,...,fji )
ej2,...,ji

]

e1,j2,...,ji
� //

[
lcm(f1,fj2 ,...,fji )

lcm(fj2 ,...,fji )
ej2,...,ji

]
+

[
i∑

p=2

(−1)p−1 lcm(f1,fj2 ,...,fji )

lcm(f1,fj2 ,...,f̂jp ,...,fji )
e1,j2,...,ĵp,...,ji

]
.

To show that Φ is a chain map, it suffices to show that the two lines in the bottom right corner are equal. By
Claim III.B.4.8.2, the coefficients for the ej2,...,ji basis element are equal. For the terms inside the summation,

we just need to multiply by f1

f1
and use Claim III.B.4.8.2 to see that they are equal:

f1

f1
· lcm(gj2 , . . . , gji)

lcm(gj2 , . . . , ĝjp , . . . , gji)
=

lcm(f1, fj2 , . . . , fji)

lcm(f1, fj2 , . . . , f̂jp , . . . , fji)
.

This shows that the diagram commutes, so Φ is chain map. Furthermore, it is straightforward to show that
Φ induces a bijection between bases, so Φ is an isomorphism. Therefore, Cone(Φ) ∼= TR(f), so Theorem
III.B.1.7 tells us that TR(f) is a free resolution of R/ 〈f〉. �

III.B.5. A Colloquial Presentation of Two Resolutions
section063021k

trck191022a Parlor Trick. Let R = k[X,Y, Z] and I = 〈XY,XZ, Y Z〉, and consider the resolution

0 // R2

∂2

(−Z −Z
Y 0
0 X

)
// R3

(XY XZ Y Z ) // R // 0.

Look at the three 2× 2 minors (i.e., sub-determinants) of ∂2:

By deleting the first row:

∣∣∣∣Y 0
0 X

∣∣∣∣ = XY,

By deleting the second row:

∣∣∣∣−Z −Z
0 X

∣∣∣∣ = −XZ,

By deleting the third row:

∣∣∣∣−Z −Z
Y 0

∣∣∣∣ = Y Z.

Notice here that these three minors are the generators of I. This is a special case of the Hilbert-Burch
resolution; see Theorem III.B.5.10 below.
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To further motivate our use of minors in this chapter, consider a resolution

0 // Rβm
∂m // · · · // Rβ0 // 0.

In particular, recall that ∂m is one-to-one, so the columns of the matrix A representing ∂m are linearly
independent over R. If R is a field, then ∂m is one-to-one if and only if some size-βm minor of A is non-zero.
Our goal in this chapter is to find similar conditions for the case where R is not a field.

defn191024a Definition III.B.5.1. Let m,n be positive integers and

Mm×n(R) = {m× n matrices (aij) | all aij ∈ R} ∼= Rmn.

For all positive integers r ≤ min(m,n), a size-r minor of a matrix A ∈ Mm×n(R) is the determinant
of an r × r matrix obtained by deleting some number of rows and columns of A. We also call this an
r × r subdeterminant of A. If this deletion leaves rows i = i1, . . . , ir and columns j = j1, . . . , jr, then the
corresponding size-r minor is of the form∣∣∣∣∣∣∣∣∣

ai1,j1 ai1,j2 · · · ai1,jr
ai2,j1 ai2,j2 · · · ai2,jr
...

...
. . .

...
air,j1 air,j2 · · · air,jr

∣∣∣∣∣∣∣∣∣
and is denoted [i1, . . . , ir | j1, . . . , jr]A = [i | j]A. Also, define Ir(A) to be the ideal of R generated by all
size-r minors of A.

ex191024b Example III.B.5.2. Let R = k[X,Y, Z] and let

A =

−Z −Z
Y 0
0 X

 .

From our computations in the Parlor Trick at the beginning of this chapter, I2(A) = 〈XY,XZ, Y Z〉. Fur-
thermore, I1(A) = 〈X,Y, Z〉, since this is the ideal generated by all 1× 1 minors of A. We will later be able
to use Proposition III.B.5.5 to show that each ideal Ir(A) is independent of the choice of basis.

lem191024c Lemma III.B.5.3. Let m, r be positive integers such that r ≤ m and A ∈Mr×m(R) and B ∈Mm×r(R).
Then |AB| ∈ Ir(A) ∩ Ir(B).

Proof. Notice that the rows of AB are linear combinations of the rows of B. Since B ∈ Mm×r(R),
each row of B has r entries and since AB ∈Mr×r(R), AB has r rows. Then

|AB| =

∣∣∣∣∣∣∣∣∣
linear combination of rows of B
linear combination of rows of B

...
linear combination of rows of B

∣∣∣∣∣∣∣∣∣ = big linear combination of

∣∣∣∣∣∣∣∣∣
row of B
row of B

...
row of B

∣∣∣∣∣∣∣∣∣ ∈ Ir(B).

Similarly, notice that the columns of AB are linear combinations of the columns of A. By a similar argument,
|AB| ∈ Ir(A). �

There is an alternate proof of Lemma III.B.5.3 using the Cauchy-Binet Formula.

lem191024d Lemma III.B.5.4. Let m,n, p, r be positive integers such that r ≤ min(m,n, p) and A ∈ Mn×p(R) and
B ∈Mp×m(R). Then Ir(AB) ⊆ Ir(A) ∩ Ir(B).

Proof. It suffices to show that each size-r minor of AB is in both Ir(A) and Ir(B). We can find that
[i | j]AB = |AiBj| by expanding the corresponding matrices, where Ai ∈ Mr×p(R) consists of rows i1, . . . , ir
of A and Bj ∈Mp×r consists of columns j1, . . . , jr of B. Then by Lemma III.B.5.3,

|AiBj| ∈ Ir(Ai) ∩ Ir(Bj).

Since all minors of Ai are also minors of A and all minors of Bj are also minors of B, we have

[i | j]AB = |AiBj| ∈ Ir(Ai) ∩ Ir(Bj) ⊆ Ir(A) ∩ Ir(B).

�
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The above two lemmas allow for the following proposition. The slogan is if A and B differ only by a
change of basis, then Ir(A) and Ir(B) are equal.

prop191024e Proposition III.B.5.5. Let m,n, r be positive integers such that r ≤ min(m,n) and A ∈Mm×n(R) and
U ∈Mm×m(R)× and V ∈Mn×n(R)×. Set B = UAV . Then Ir(A) = Ir(B). Note that B is defined so that
the following diagram commutes:

Rn
A // Rm

U∼=
��

Rn
B
//

V ∼=

OO

Rm.

Proof. Since U and V are invertible, we write A = U−1BV −1. Then we use Lemma III.B.5.4 to show
both inclusions:

Ir(B) = Ir(UAV ) ⊆ Ir(U) ∩ Ir(A) ∩ Ir(V ) ⊆ Ir(A), and

Ir(A) = Ir(U
−1BV −1) ⊆ Ir(U−1) ∩ Ir(B) ∩ Ir(V −1) ⊆ Ir(B).

Therefore, Ir(A) = Ir(B). �

defn191024f Definition III.B.5.6. Let r,m, n be positive integers such that r ≤ min(m,n), let f ∈ HomR(Rn, Rm),
and let A ∈Mm×n(R) represent f with respect to some bases. Then Ir(f) = Ir(A). By Proposition III.B.5.5,
this definition is independent of the choice of bases. Furthermore, if s > min(m,n), then Is(f) = 0 and if
s ≤ 0, then Is(f) = R.

prop191024g Proposition III.B.5.7. Let r,m, n be positive integers such that r ≤ min(m,n) and let f ∈ HomR(Rn, Rm).
Then

I0(f) ⊇ I1(f) ⊇ I2(f) ⊇ · · · ⊇ Ir(f) ⊇ · · · ⊇ Imin(m,n)+1(f)︸ ︷︷ ︸
=0

.

Proof. Expanding any size-r minor along a single row or column allows us to write it as a linear
combination of size-(r − 1) minors. Therefore Ir(f) ⊆ Ir−1(f) for all r. �

The proof of the following result is outside of the scope of this class. We will use it to verify the two
resolutions of interest in Theorems III.B.5.10 and III.B.5.30 below.

thm191024h Theorem III.B.5.8 (Buchsbaum-Eisenbud). Assume that R is noetherian and consider an R-complex

F =

(
0 // Rβm

∂Fm // Rβm−1
∂Fm−1 // · · ·

∂F1 // Rβ0 // 0

)
.

For all i = 1, . . . ,m, set

ri =

m∑
j=i

(−1)j−iβj = βi − βi+1 + · · ·+ (−1)m−iβm.

Then F is a resolution of H0(F ) if and only if depth(Iri(∂
F
i ), R) ≥ i for all i = 1, . . . ,m.

ex191024i Example III.B.5.9. Let R = k[X,Y, Z] and I = 〈XY,XZ, Y Z〉 and consider the resolution

F =

 0 // R2

(−Z −Z
Y 0
0 X

)
// R3

(XY XZ Y Z ) // R // 0

 .

Notice here that β2 = 2, β1 = 3, and β0 = 1. We check depth(Iri(∂
F
i ), R) ≥ i for i = 1, 2:

i = 2 : r2 = β2 = 2, so Ir2(∂F2 ) = I2

(−Z −Z
Y 0
0 X

)
= 〈XY,XZ, Y Z〉 = I. Then

depth(Ir2(∂F2 ), R) = depth(I,R) = 2 ≥ 2.

i = 1 : r1 = β1 − β2 = 3− 2 = 1, so Ir1(∂F1 ) = I1
(
XY XZ Y Z

)
= 〈XY,XZ, Y Z〉 = I. Then

depth(Ir1(∂F1 ), R) = depth(I,R) = 2 ≥ 1.

Therefore by Theorem III.B.5.8, F is a resolution of R/I.
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We next give a result by Hilbert and Burch, an unnumbered example, and the proof of the result.

thm191024j Theorem III.B.5.10 (Hilbert-Burch). Assume that R = k[X1, . . . , Xd].

thm191024j.a (a) Let f ∈ HomR(Rn, Rn+1) for n ≥ 1, and let B ∈ M(n+1)×n(R) represent f with respect to the standard

bases. For i = 1, . . . , n+ 1, set fi = |Bi|, where Bi is obtained from B by deleting the ith row. In other
words, we have

fi = [1, . . . , î, . . . , n+ 1 | 1, . . . , n]B .

Assume depth(In(f), R) ≥ 2. Then

0 // Rn
f // Rn+1

( f1 −f2 ··· (−1)nfn+1 ) // R // 0

is a free resolution of R/In(f). Also, for any non-zero-divisor a ∈ R, we get a resolution

0 // Rn
f // Rn+1

( af1 −af2 ··· (−1)nafn+1 )

h
// R // 0.

of R/aIn(f).
thm191024j.b (b) Conversely, if I ≤ R with I 6= 0 such that there exists a free resolution

0 // Rβ2
∂F2 // Rβ1

∂F1 // R // 0,

of R/I, then β1 = β2 + 1 and there exists a non-zero-divisor a ∈ R such that I = aIβ2
(∂F2 ).

ex191029a Example. We saw in the III.B.5 opening this chapter that the complex

0 // R2

(−Z −Z
Y 0
0 X

)
∂2

// R3
(XY XZ Y Z )

∂1

// R // 0

resolves the R-module R/I where I = (XY XZ Y Z). We also saw that the 2×2 minors of ∂2 are generators
of I. By the theorem we also have that

0 // R2

(−Z −Z
Y 0
0 X

)
∂2

// R3
(X2Y 2Z X2Y Z2 XY 2Z2 )

∂1

// R // 0

is a resolution for R/(X2Y 2Z, X2Y Z2, XY 2Z2).

Proof. (a) It suffices to prove the last statement of a. We want to apply Buchsbaum-Eisenbud to the
sequence

0 // Rn
f // Rn+1 h // R // 0, (III.B.5.10.1) eq191030a

which we claim is an R-complex. If A = (aij) is the matrix representing f , then we have

hf =
(
af1 −af2 · · · (−1)nafn+1

)
(aij)

=


a (f1a11 − f2a21 + · · ·+ (−1)nfn+1an+1,1)
a (f1a12 − f2a22 + · · ·+ (−1)nfn+1an+1,2)

...
a (f1a1,n+1 − f2a2,n+1 + · · ·+ (−1)nfn+1an+1,n+1)


T

which is a row vector of zeros, since, for instance, the first entry is the product of a and the determinant∣∣∣∣∣∣∣∣∣
a11 a11 a12 · · · a1,n+1

a21 a21 a22 · · · a2,n+1

...
...

...
. . .

...
an+1,1 an+1,1 an+1,2 · · · an+1,n+1

∣∣∣∣∣∣∣∣∣ ,
which contains a repeated column. Hence (III.B.5.10.1) is an R-complex. In the context of the result
by Buchsbaum-Eisenbud, if i = 2 then r2 = β2 = n and

depth(Ir2(f), R) = depth(In(f), R) ≥ 2

where the inequality holds by assumption. If i = 1, then r1 = β1 − β2 = (n+ 1)− n = 1 and

Ir1(h) = I1
(
af1 · · · afn+1

)
= 〈af1, . . . , afn+1〉 = a · 〈f1, . . . , fn+1〉 = a · In(f).
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Hence it now suffices to show that Ir1(h) = a·In(f) contains a non-zero-divisor on R. Since depth(In(f), R) ≥
2, there exists a non-zero-divisor b ∈ In(f). Since a is a non-zero divisor, so is the product ab ∈ a · In(f).

(b) Assume R/I has a resolution

0 // Rβ2
∂2 // Rβ1

∂1 // R // R/I // 0 (III.B.5.10.2) eqn191029b

and that I 6= 0. By Theorem III.A.3.8, we know β1 = β2 + 1 (here we use our assumption that R =
k[X1, . . . , Xd]). Then since r2 = β2 and r1 = β1 − β2 = 1, by Buchsbaum-Eisenbud we have

depth(Iβ2(∂2), R) ≥ 2

and

depth(I1(∂1), R) ≥ 1.

Note that since the determinant of a one-by-one matrix is equal to the lone entry, the ideal I1(∂1) is
generated by the entries in the matrix representing ∂1 and hence I1(∂1) = Im ∂1 = I. Consider the following
commutative diagram.

0 // Rβ2
∂2 // Rβ1 // Im ∂1

// 0

0 // Rβ2

∂2

//

id

OO

Rβ1 //

id

OO

Iβ2(∂2) //

∃!φ

OO

0

The top row is exact since (III.B.5.10.2) is exact, the bottom row is exact by Hilbert-Burch a, the first square
commutes by construction, and the existence of φ follows from the exactness of the rows. Then by the Snake
Lemma we have that φ is an isomorphism, i.e., Iβ2(∂2) ∼= I.

We need to show that there is a non-zero-divisor a ∈ R such that I = a·Iβ2
(∂2). Since depth(Iβ2

(∂2), R) ≥
2, we know there is a weakly R-regular sequence g, h ∈ Iβ2

(∂2). Since φ is a homomorphism we have

g · φ(h) = φ(gh) = h · φ(g)

and we know g, h 6= 0 since the sequence is weakly R-regular. We claim φ(g) ∈ 〈g〉. In R = R/ 〈g〉 we have

h · φ(g) = g · φ(h) = 0

and since h is a non-zero-divisor on R by assumption, we also have

φ(g) = 0 ∈ R,
so φ(g) ∈ 〈g〉. Thus since for all ζ ∈ Iβ2

(∂2) we have

g · φ(ζ) = ζ · φ(g)

we also have

φ(ζ) = ζ · φ(g)

g

where φ(g)/g ∈ R by the claim. Set a = φ(g)/g note we have shown that φ(ζ) = ζ · a for all ζ ∈ Iβ2(∂2), i.e.,

I = Imφ = a · Iβ2
(∂2).

�

Buchsbaum-Eisenbud.

ex191029b Example III.B.5.11. Set R = k[X,Y, Z] and consider the matrix

A =

 0 X Y
−X 0 Z
−Y −Z 0

 .

Then we construct generators of an ideal I by taking the square roots of the 2× 2 minors of A obtained by
deleting the ith row and ith column, i = 1, 2, 3, i.e., I = 〈Z, Y,X〉. Observe that

(
Z −Y X

)
·

 0 X Y
−X 0 Z
−Y −Z 0

 =
(
0 0 0

)
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and we thus have the following R-complex.

0 // R(
Z
−Y
X

)// R3 (
0 X Y
−X 0 Z
−Y −Z 0

) // R3

(Z −Y X )
// R // 0

It is the Koszul complex KR(Z,−Y,X)! We show how to build resolutions from matrices like A in Theo-
rem III.B.5.30 below.

defn191031a Definition III.B.5.12. A matrix A ∈ Mn×n(R) is alternating if AT = −A and aii = 0 for all i =
1, . . . , n. We denote the set of n× n alternating matrices in Mn×n(R) by

Altn(R) = {alternating A ∈Mn×n(R)}.

Notice that if 2 is a unit in R (e.g. if R ⊇ Q), then AT = −A implies that aii = 0 for all i = 1, . . . , n since
aii = −aii implies that 2aii = 0.

ex191031b Example III.B.5.13. Let R = k[X,Y, Z]. The following two matrices are both alternating:

A =

(
0 X
−X 0

)
, and B =

 0 X Y
−X 0 Z
−Y −Z 0

 .

Furthermore, notice that |A| = X2 and

|B| = −X
∣∣∣∣−X Z
−Y 0

∣∣∣∣+ Y

∣∣∣∣−X 0
−Y −Z

∣∣∣∣ = −XY Z +XY Z = 0.

thm191031c Theorem III.B.5.14 (Cayley). Let A ∈ Altn(R). If n is even, then there exists f ∈ R such that
|A| = f2. If n is odd, then |A| = 0 = 02.

Before we can prove the above theorem, we need a few more tools.

prop191031d Proposition III.B.5.15. If n is odd and A ∈ Altn(R), then |A| = 0.

Proof. We split the proof into two cases. For the first case, suppose that 2 is a unit in R. Then we
use that n is odd to get

|A| =
∣∣AT ∣∣ = |−A| = (−1)n |A| = − |A| .

Therefore, 2 |A| = 0. Since 2 is a unit, this implies |A| = 0.
For the second case, we do not assume that 2 is a unit in R. Let A = (aij) and set

S = Z[Xij | i = 2, . . . , n, j = i+ 1, . . . , n],

so S is a polynomial ring in
(
n−1

2

)
variables. Then S ⊆ Q(Xij) = Frac(S), where Frac(S) is the field of

fractions of S. Define

X =


0 X12 X13 · · · X1n

−X12 0 X23 · · · X2n

...
...

...
. . .

...
−X1n −X2n −X3n · · · 0

 ∈ Altn(S) ⊆ Altn(Frac(S)).

Then X falls into the first case, so |X| = 0. Define a ring homomorphism φ : S → R by φ(Xij) = aij . Then
|A| = φ(|X|) = φ(0) = 0. �

lem191031e Lemma III.B.5.16. If n is even, then∣∣∣∣∣∣∣∣∣∣∣∣∣

0 b12 0 0 · · · 0
−b12 0 b23 0 · · · 0

0 −b23 0 b34 · · · 0
0 0 −b34 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= b212b

2
34 · · · b2n−1,n =

n−1∏
i=1

i odd

b2i,i+1.
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Proof. We prove this by induction. For the base case, consider n = 2. Then∣∣∣∣ 0 b12

−b12 0

∣∣∣∣ = b212.

Now suppose that the result holds for (n− 2)× (n− 2) matrices of the given form. Then expand along the
first column, then along the first row to obtain the first equality in the next display.∣∣∣∣∣∣∣∣∣∣∣∣∣

0 b12 0 0 · · · 0
−b12 0 b23 0 · · · 0

0 −b23 0 b34 · · · 0
0 0 −b34 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= b212

∣∣∣∣∣∣∣∣∣
0 b34 · · · 0
−b34 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∣∣∣∣∣∣∣∣∣ = b212b
2
34 · · · b2n−1,n

The second equality follows from the inductive hypothesis. �

lem191031f Lemma III.B.5.17. Let Q ⊆ K be a field extension and let A ∈ Altn(K)×. Then there exists C ∈ Mn×n(K)×

such that B = CTAC ∈ Altn(K)× has the form

B =



0 b12 0 0 · · · 0
−b12 0 b23 0 · · · 0

0 −b23 0 b34 · · · 0
0 0 −b34 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


Proof. If n is odd, then |A| = 0 by Proposition III.B.5.15, which contradicts that A is invertible.

Therefore n must be even. Define f : Kn × Kn → K by f(v, w) = vTAw ∈ M1×1(K) ∼= K. Then f is
bilinear and

f(w, v) = wTAv = (wTAv)T = vTATw = −vTAw = −f(v, w),

so f is skew-symmetric. Therefore we have f(v, v) = 0 because 2 is a unit in Q ⊆ K.

clm191031f.1 Claim (1). There exists v, w ∈ Kn such that f(v, w) 6= 0.

Proof. We show that there exist 1 ≤ i, j ≤ n such that f(ei, ej) 6= 0. Notice that

f(ei, ej) = eTi Aej = aTi Col(A, j) = aij .

Since A is invertible, we must have aij 6= 0 for some 1 ≤ i, j ≤ n, so f(ei, ej) 6= 0 for those i and j. X

Now replace v with 1
f(v,w) v to assume that f(v, w) = 1. If there exists α ∈ K such that v = αw, then

1 = f(v, w) = f(αw,w) = αf(w,w) = 0,

which is clearly contradictory. This implies that v and w are linearly independent. Set V1 = SpanK(v, w) ⊆ Kn,
so a basis for V1 is {v, w}. Set

V2 = “V
⊥f
1 ” = {y ∈ Kn | f(y, z) = 0 ∀ z ∈ V1 } ⊆ Kn.

clm191031f.2 Claim (2). Kn = V1 ⊕ V2.

Proof. We need to prove that V1 ∩ V2 = 0 and for all t ∈ Kn, t = z + y for some z ∈ V1 and y ∈ V2.

(1) We first show that the intersection is trivial. Let u ∈ V1 ∩ V2, so u = av + bw for a, b ∈ K. Then

0 = f(u, v) = f(av + bw, v) = a f(v, v)︸ ︷︷ ︸
=0

+b f(w, v)︸ ︷︷ ︸
=−1

= −b,

so b = 0. By a similar argument, a = 0. Therefore, u = av + bw = 0.
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(2) Let t ∈ Kn. We want to find z ∈ V1 and y ∈ V2 such that t = z + y. Set z = f(t, w)v − f(t, v)w ∈
Span(v, w) = V1. Then t = z + (t − z), so it suffices to show that t − z ∈ V2. To do this, it suffices to
show that f(t− z, v) = 0 and f(t− z, w) = 0:

f(t− z, v) = f(t− (f(t, w)v − f(t, v)w), v)

= f(t, v)− f(t, w) f(v, v)︸ ︷︷ ︸
=0

+f(t, v) f(w, v)︸ ︷︷ ︸
=−1

= f(t, v)− f(t, v) = 0.

By a similar argument, f(t− z, w) = 0. X

Let v3, . . . , vn be a basis of V2, so v, w, v3, . . . , vn is a basis of Kn. Define f2 = f |V2×V2
: V2 × V2 → K,

and let B1 = (bij) ∈ M(n−2)×(n−2)(K) be the matrix representing f2 with respect to the basis v3, . . . , vn.
Then

bij = f(vi+2, vj+2) = −f(vj+2, vi+2) = −bji,
so B1 ∈ Altn(K). Set P = (v|w|v3| · · · |vn).

clm191031f.3 Claim (3).

PTAP =

 0 1 0
-1 0 0
0 0 B1


Proof. Consider each entry for the above matrix as follows:

(PTAP )ij = eTi P
TAPej

= (Pei)
TA(Pej)

= Col(P, i)TACol(P, j).

If i, j ≥ 3, then
(PTAP )ij = vTi Avj = f(vi, vj) = bi−2,j−2.

The other cases for i and j are computed similarly. X

In particular, since P and A are invertible, then PTAP is also invertible, so B1 must be invertible since
it is a submatrix of PTAP . We can repeat this process as many times as needed to find Q ∈ Mn×n(K)×

such that C = QP and B = CTAC has the desired form. �

lem191031g Lemma III.B.5.18. Assume that R is a unique factorization domain and let g, h ∈ R be such that h 6= 0
and (g/h)

2 ∈ R. Then g/h ∈ R.

Proof. Since R is a unique factorization domain, we can assume that g/h is in lowest terms. In other
words, g and h have no common prime factors. Set f = g2/h2 ∈ R, so h2f = g2. If h is not a unit, then it
has a prime factor p, so

p | h ⇒ p | g2 ⇒ p | g.
This is a contradiction since g and h have no common prime factors. Therefore, h is a unit, so g/h ∈ R. �

Now we are finally ready to prove the result by Cayley.

Proof of Theorem III.B.5.14. If n is odd, then the conclusion follows from Proposition III.B.5.15,
so we assume n is even. We proceed by way of cases. As a special case we consider

R0 = Z[Xij | i = 1, . . . , n− 1; j = i+ 1, . . . , n]

and

X =


0 X12 · · · X1n

−X12 0 · · · X2n

...
...

. . .
...

−X1n −X2n · · · 0

 .

By Lemma III.B.5.17 there exists a matrix C ∈ Mn×n(K)× such that CTXC = B is tridiagonal and
alternating, where K = frac(R0). Then by Lemma III.B.5.16 we have

(b12b34 · · · bn−1,n)2 = |B| = |CT ||X||C| = |C|2|X|



III.B.5. A COLLOQUIAL PRESENTATION OF TWO RESOLUTIONS 189

and since C is invertible we have

|X| = 1

|C|2
(b12b34 · · · bn−1,n)2 ∈ K.

Since |X| ∈ R0, by Lemma III.B.5.18 we have

f =
b12b34 · · · bn−1,n

|C|
∈ R0,

which proves this case.
In the general case, we let A ∈ Altn(R) and consider the ring homomorphism φ : R0 → R given by

φ(Xij) = aij . There exists an element F ∈ R0 such that |X| = F 2 and we observe that

|A| = φ(|X|) = φ(F 2) = φ(F )2.

Taking f = φ(F ), this proves the general case. �

note191105a Note III.B.5.19. Let A ∈ Altn(R) and f ∈ R such that f2 = |A|. Then f is not unique, not even up to
a sign, in general. For instance, if x ∈ R such that x2 = 0, then for all α ∈ R we have∣∣∣∣ 0 x

−x 0

∣∣∣∣ = x2 = 0 = (αx)2.

This motivates the following question: how does one choose f well?

prop191105b Proposition III.B.5.20. Let R be an integral domain and let f, g ∈ R such that f2 = g2. Then f = ±g.

Proof. This follows from the equality 0 = g2 − f2 = (g − f)(g + f). �

prop191105c Proposition III.B.5.21. Let D be an integral domain and set R0 = D[X1, . . . , Xd].

prop191105c.a (a) If f ∈ R0 is such that 0 6= f2 is homogeneous of degree n, then f is homogeneous, n is even, and
deg(f) = n/2.

prop191105c.b (b) If f, g ∈ R0 are such that 0 6= fg is homogeneous of degree n, then f and g are each homogeneous and
deg(f) + deg(g) = n.

Proof. (b) We write f = fi + · · ·+ fj and g = gp + · · ·+ gq such that i ≤ j, p ≤ q, and where f` and
gm are homogeneous of degree ` and m, respectively, and fi, fj , gp, gq 6= 0. Then since we are in a domain
we know figp and fjgq are each nonzero. Note in the product fg these are the terms of lowest and highest
possible degree, respectively. Since fg is homogeneous this implies i = j and p = q, implying f and g are
each homogeneous and deg(f) + deg(g) = deg(fg).

(a) This follows directly from part (b). �

note191105d Note III.B.5.22. Assume q ∈ N and n = 2q, and consider the ring R0 and the matrix X ∈ Altn(R) as
in the proof of Cayley’s Theorem. Let f ∈ R0 be such that f2 = |X|. Then

f2 = |X| =
∑
σ∈Sn

sgn(σ)x1,σ(1)x2,σ(2) · · ·xn,σ(n) (III.B.5.22.1) eqn191105a

where

xij =


Xij if i < j

0 if i = j

−Xij if i > j.

Consider σ0 = (1 2)(3 4) · · · (n−1 n) ∈ Sn with sgn(σ0) = (−1)q. Then the term of the sum in (III.B.5.22.1)
associated with σ0 is

(−1)qX12(−X12)X34(−X34) · · ·Xn−1,n(−Xn−1,n) = (−1)2q(X12X34 · · ·Xn−1,n)2

= (X12X34 · · ·Xn−1,n)2.

One can check that σ0 is the unique element of Sn such that its associated term uses (X12X34 · · ·Xn−1,n)2.
Therefore f must contain ±X12X34 · · ·Xn−1,n and we multiply f by −1 if necessary to assume f contains
X12X34 · · ·Xn−1,n.
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depf191105f Depfinition III.B.5.23. Using the notation of Note III.B.5.22, the pfaffian of X is pf X = f where the
coefficient of X12X34 · · ·Xn−1,n is 1. Note pf(X)2 = |X|. Let A ∈ Altn(R) and define the ring homomor-
phism φ : R0 → R by φ(Xij) = aij . The pfaffian of A is pf(A) = φ(pf(X)).

prop191105e Proposition III.B.5.24. Observe that in the notation of Definition III.B.5.23 we have

pf(A)2 = φ(pf(X))2 = φ(pf(X)2) = φ(|X|) = |A|.

The next fact we state without proof.

fact191105g Fact III.B.5.25. Let q ∈ N and n = 2q, and consider R0 and X as in Note III.B.5.22. Then

pf(X) =
1

2q · q!
·
∑
σ∈Sn

sgn(σ)

q∏
i=1

Xσ(2i−1),σ(2i).

Set

Πn = {(i1, j1, i2, j2, . . . , iq, jq) ∈ Nn | {i1, j1, . . . , iq, jq} = [n]; i1 < i2 < · · · < iq; im < jm, ∀m = 1, . . . , q } .
Then we have

pf(X)
(1)
=

∑
(i1,...,jq)∈Πn

sgn
(

1 2 3 4 ··· n−1 n
i1 j1 i2 j2 ··· iq jq

)
Xi1,j1Xi2,j2 · · ·Xiq,jq

(2)
=

n∑
j=1,j 6=i

(−1)i+j+1+θ(j−i) · aij pf(Aij)

where

θ(j − i) =

{
0 if j − i > 0

1 if j − i < 0

and Aij ∈ Altn−2(R) is obtained from A by deleting the ith row and column as well as the jth row and
column.

ex191105h Example III.B.5.26. Consider the ring Z[a, b, c, x, y, z] and the alternating matrix

X =


0 a b c
−a 0 x y
−b −x 0 z
−c −y −z 0

 .

Expanding |X| along the first column we have

|X| = a ·

∣∣∣∣∣∣
a b c
−x 0 z
−y −z 0

∣∣∣∣∣∣− b ·
∣∣∣∣∣∣
a b c
0 x y
−y −z 0

∣∣∣∣∣∣+ c ·

∣∣∣∣∣∣
a b c
0 x y
−x 0 z

∣∣∣∣∣∣ .
Expanding each of these determinants along the top row we find

|X| = a2z2 − 2abyz + 2acxz − 2bcxy + b2y2 + c2x2

= (az − by + cx)2.

Since X12 = a and X34 = z we want the coefficient of az to be +1, as we have above. Hence pf(X) =
az − by + cx.

Now we demonstrate equalities (1) and (2) from Fact III.B.5.25 for X. First, note that

Π4 = {(1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3)}
and we compute the signs of the corresponding elements of S4.(

1 2 3 4
1 2 3 4

)
= (1) sgn = 1(

1 2 3 4
1 3 2 4

)
= (2 3) sgn = −1(

1 2 3 4
1 4 2 3

)
= (2 4 3) sgn = 1
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Therefore equality (1) gives

pf(X) = X12X34 −X13X24 +X14X23 = az − by + cx

which agrees with our initial computation.
Second, we confirm (2) for this example. We choose i = 3 Then (2) gives

pf(X) =

4∑
j=1,j 6=3

(−1)3+j+1+θ(j−3)a3j pf(A3j)

= (−1)3+1+1+1a31 pf
( 0 y
−y 0

)
+ (−1)3+2+1+1a32 pf

(
0 c
−c 0

)
+ (−1)3+4+1a34 pf

(
0 a
−a 0

)
= −by + xc+ za,

which also agrees with our initial computation.

defn191107a Definition III.B.5.27. Let A ∈ Altn(R). For all i = 1, . . . , n, let Ai denote the (n − 1) × (n − 1)
alternating matrix found by deleting the ith row and ith column of A. Set

Pfn−1(A) = 〈pf(A1), . . . ,pf(An)〉 .
Then define P ∈M1×n(R) by

P = P (A) =
(
pf(A1) −pf(A2) · · · (−1)n−1 pf(An)

)
and

F = F (A) =

(
0 // R

PT // Rn
A // Rn

P // R // 0

)
.

ex191107b Example III.B.5.28. (a) If n is even, then Pfn−1(A) = 0 since by Proposition III.B.5.15, we have
pf(Ai) = 0 for all i = 1, . . . , n.

(b) Let n = 3. Then F (A) is the Koszul complex found in Example III.B.5.11.

prop191107c Proposition III.B.5.29. If A ∈ Altn(R), then F (A) is an R-complex with H0(F (A)) = R/Pfn−1(A).

Proof. Let i ∈ [n] and set

Ã =

[
0 Row(A, i)

Col(A, i) A

]
=



0 ai1 · · · aii · · · ain
a1i = −ai1 a11 · · · a1i · · · a1n

...
...

...
...

aii = −aii ai1 · · · aii · · · ain
...

...
...

...
ani = −ain an1 · · · ani · · · ann


∈ Altn+1(R).

Since A is alternating, we have aii = 0. Therefore Ã has a repeated column, so |A| = 0; since Ã is alternating,

it follows that pf(Ã) = 0. Using Fact III.B.5.25, we have

0 = pf(Ã) =

n+1∑
j=2

(−1)j ãij pf(Ã1j) =

n∑
j=1

(−1)j−1aij pf(Aj) = Row(A, i) · PT .

This is true for any i, so APT = 0. Also

0 = (APT )T = PAT = −PA,
so PA = 0 as well. Therefore, F (A) is an R-complex. Furthermore, notice that

H0(F (A)) = R/ ImP = R/Pfn−1(A). �

thm191107d Theorem III.B.5.30 (Buchsbaum-Eisenbud). Assume R is local and noetherian with maximal ideal m.

thm191107d.a (a) Let A ∈ Altn(R) such that I = Pfn−1(A) satisfies depth(I,R) ≥ 3 and aij ∈ m. Then F (A) is a free
resolution of R/I and n is odd.

thm191107d.b (b) Conversely, if I � R satisfies depth(I,R) ≥ 3 and R/I has a free resolution

0 // R // Rn // Rn // R // 0,

then there exists A ∈ Altn(R) such that I = Pfn−1(A) and F (A) is a free resolution of R/I. In particular,
n is odd.
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note191107e Note III.B.5.31. For A ∈ Altn(R), verifying that depth(Pfn−1(A), R) ≥ 3 can be hard.

Proof of Buchsbaum-Eisenbud(a). We use the Buchsbaum Eisenbud acyclicity criterion III.B.5.8,
beginning with the i = 3 and i = 1 cases.

i = 3 : In this case, we have r3 = 1. Then

Ir3(∂F3 ) = Ir3(PT ) = I1(PT ) = 〈Pij〉 = 〈pf(A1), . . . ,pf(An)〉 = I.

By assumption, I satisfies depth(I,R) ≥ 3, so depth(Ir3(∂F3 ), R) ≥ 3 as well.
i = 1 : In this case, we have r1 = n− (n− 1) = 1, so Ir1(∂F1 ) = I1(P ) = I via the same argument as for

the i = 3 case. Therefore by assumption, depth(Ir1(∂F1 ), R) ≥ 3 ≥ 1.
i = 2 : In this case, we have r2 = n − 1, so Ir2(∂F2 ) = In−1(A). This ideal is related to Pfn−1(A), but

they are not equal. In order to complete this case, we need to show that

depth(Pfn−1(A), R) = depth(In−1(A), R).

For this, we need to build up a few more results.

lem191107f Lemma III.B.5.32. Set R = Z[Xij | i, j = 1, . . . , n] and X = (Xij). Then |X| is prime in R.

Proof. Notice that |X| is a homogeneous polynoimal of degree n. A result of Gauss tells us that R is a
unique factorization domain, so it suffices to show that |X| is irreducible in R. By Proposition III.B.5.21, if
|X| factors in R, then it factors as |X| = fg where f and g are both homogeneous polynomials. Furthermore,
since Z is an integral domain, degXij is additive on products. In particular, X11 appears in |X|, so X11 must
appear in f or in g, and moreover

1 = degX11
(|X|) = degX11

(f) + degX11
(g).

By symmetry, we can assume without loss of generality that degX11
(f) = 1 and degX11

(g) = 0.

Claim. degX1j
(g) = 0, i.e., X1j does not appear in g for any j = 1, . . . , n.

Proof. By way of contradiction, suppose that degX1j
(g) > 0. Then degX1j

(f) = 0 and degX1j
(g) = 1.

Then we can rewrite |X| as
|X| = fg = (f0 + f1X11)(g0 + g1X1j),

where X11 does not appear in fi and X1j does not appear in gi for i = 0, 1. Multiplying out the above
product gives us

|X| = f0g0 + f0g1X1j + f1g0X11 + f1g1X11X1j .

Notice that f1 6= 0 and g1 6= 0, so the final term in the above equation is non-zero. Since X11 does not
appear in g, then X11 does not appear in gi for i = 0, 1 and since X1j does not appear in f , then X1j does
not appear in fi for i = 0, 1. Therefore we have

|X| = f0g0︸︷︷︸
no X11X1j

+ f1g0︸︷︷︸
no X1j

X11

︸ ︷︷ ︸
no X11X1j

+ f0g1︸︷︷︸
no X11

X1j

︸ ︷︷ ︸
no X11X1j

+ f1g1X11X1j︸ ︷︷ ︸
X11X1j appears

.

Therefore there is no cancellation, so |X| has a term with X11X1j , which contradicts the fact that |X| only
contains terms of the form X1∗X2∗ · · ·Xn∗. Therefore, X1j does not appear in g for any j = 1, . . . , n. X

Through a similar argument, we can show g has no Xij for any i, j = 1, . . . , n. So g is a constant
polynomial. Furthermore, the terms of |X| each have a coefficient of ±1, so g = ±1. Therefore |X| is
irreducible. �

lem191107g Lemma III.B.5.33. Let A ∈Mn×n(R) and

Adj(A)ji = (−1)i+j [1, . . . , î, . . . , n | 1, . . . , ĵ, . . . , n]A,

where we recall that [1, . . . , î, . . . , n | 1, . . . , ĵ, . . . , n]A denotes the determinant of the matrix obtained by
deleting the ith row and jth column of A. It follows that A · Adj(A) = |A| In = Adj(A) · A. Assume that
|A| = 0. Then for all i, j, p, q,

Adj(A)ij Adj(A)pq = Adj(A)iq Adj(A)pj .

In particular,
Adj(A)ij Adj(A)ji = Adj(A)ii Adj(A)jj .
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Proof. The conclusion is trivial if Adj(A) = 0, so assume without loss of generality that Adj(A) 6= 0.
First we prove a special case. Assume R is an integral domain and let K = Frac(R). Since Adj(A) 6= 0 there
exists some non-zero size-(n−1) minor of A. The columns used for that minor must be linearly independent
over K and therefore dimK ColK(A) ≥ n − 1. Since the determinant of A is zero, the columns of A are
linearly dependent, i.e., dimK ColK(A) ≤ n− 1. Hence dimK ColK(A) = n− 1 and therefore by rank-nullity
any two vectors in NullK(A) are linearly dependent over K. Now since A · Adj(A) = |A| · In = 0, we know
every column of Adj(A) is in NullK(A), i.e., every two columns of Adj(A) are linearly dependent over K.
Thus every size-2 minor of Adj(A) using rows i, p and columns j, q gives the desired result.

Now we prove the general case. Set R1 = Z[Xij | i, j = 1, . . . , n] and set X = (Xij) ∈ Mn×n(R1).
By Lemma III.B.5.32 we know |X| ∈ R1 is prime and therefore R2 = R1/ 〈|X|〉 is an integral domain. Set

xij = Xij ∈ R2 and x = (xij) ∈Mn×n(R2), and note |x| = |X| = 0 in R2. Now, by the special case we have

Adj(x)ij Adj(x)pq = Adj(x)iq Adj(x)pj .

Recall the ring homomorphism φ : R1 → R given by φ(Xij) = aij and note that φ(|X|) = |A| = 0. Therefore

there exists a unique, well-defined ring homomorphism φ making the following diagram commute

R1
φ //

π

��

�

R

R2

∃!φ

>>

where π is the natural surjection. Furthermore, we have φ(xij) = φ(Xij) = aij for all i, j and

Adj(A)ij = φ(Adj(X)ij) = φ(Adj(x)ij).

Thus we conclude as follows.

Adj(A)ij Adj(A)pq = φ(Adj(x)ij)φ(Adj(x)pq)

= φ(Adj(x)ij Adj(x)pq)

= φ(Adj(x)iq Adj(x)pj)

= φ(Adj(x)iq)φ(Adj(x)pj)

= Adj(A)iq Adj(A)pj

�

lem191112a Lemma III.B.5.34. Let A ∈ Altn(R) with n = 2q + 1 for some q ∈ N. Assume Pfn−1(A) 6= 0. Then

rad(Pfn−1(A)) = rad(In−1(A)).

Proof. For the forward containment, it suffices to show that pf(Ai)
2 ∈ In−1(A) for each i = 1, . . . , n.

Since pf(Ai)
2 = |Ai|, which is a size-(n− 1) minor of A, this is immediate.

For the reverse containment, we need to show that for every i, j ∈ [n] we have (Adj(A)ij)
2 ∈ Pfn−1(A).

Since n is odd, we know |A| = 0. Then by Lemma III.B.5.32 we have

(Adj(A)ij)
2 = −Adj(A)ij Adj(A)ji

= −Adj(A)ii Adj(A)jj

= −|Ai||Aj |
= −pf(Ai)

2 pf(Aj)
2 ∈ Pfn−1(A)

where the first equality holds since A is alternating. �

prop191112b Proposition III.B.5.35. Let I, J ≤ R be ideals such that rad(I) = rad(J). Then depth(I,R) =
depth(J,R).

Proof. If I = R, then rad(J) = rad(I) = R, so J = R. Therefore we assume without loss of generality
that I and J are proper ideals. Let f = f1, . . . , fn ∈ I be a weakly R-regular sequence.

clm191112b.1 Claim (1). If r1, . . . , rn ∈ R such that
∑n
i=1 firi = 0, then ri ∈ 〈f〉 for all i ∈ [n].
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Proof. We induct on n. Suppose n = 1. Then f1r1 = 0 implies r1 = 0 ∈ 〈f〉, since f1 is a non-zero-

divisor. We therefore proceed with the inductive step. Then by assumption we have fnrn = −
∑n−1
i=1 firi,

implying fnrn = 0 in the ring R/ 〈f1, . . . , fn−1〉. Since fn is a non-zero-divisor on R/ 〈f1, . . . , fn−1〉, this

implies rn ∈ 〈f1, . . . , fn−1〉 ⊆ 〈f〉. So let s1, . . . , sn−1 ∈ R be such that rn =
∑n−1
i=1 fisi. Substituting we

have

0 =

n∑
i=1

firi =

n−1∑
i=1

firi + fn ·
n−1∑
i=1

fisi =

n−1∑
i=1

fi(ri + fnsi).

Then the inductive hypothesis implies

ri + fnsi ∈ 〈f1, . . . , fn−1〉 ⊆ 〈f〉

for each i = 1, . . . , n− 1. Then since each fnsi ∈ 〈f〉, it follows that ri ∈ 〈f〉 for i = 1, . . . , n− 1. X

clm191112b.2 Claim (2). Let m ∈ Zm≥1. Then f (m) := fm1 , f2, . . . , fn is a weakly R-regular sequence.

Proof. We induct on m. The base case m = 1 holds by assumption, so we proceed with the inductive
step. Assume m ≥ 2 and f (m−1) is weakly R-regular. Since f1 is a non-zero-divisor on R by assumption,
it follows that fm1 is a non-zero-divisor on R as well. For i ≥ 2 set R = R/ 〈fm1 , f2, . . . , fi−1〉 and we need
to show that fi is a non-zero-divisor on R. Let r ∈ R be such that fir = 0 ∈ R. Then r ∈ R satisfies
fir ∈ 〈fm1 , f2, . . . , fi−1〉 and we let t1, . . . , ti−1 ∈ R such that

fir = t1f
m
1 +

i−1∑
j=2

tjfj = (t1f1)fm−1
1 +

i−1∑
j=2

tjfj . (III.B.5.35.1) eqn191112b.1

Since f (m−1) is weakly R-regular we know r ∈
〈
fm−1

1 , f2, . . . , fi−1

〉
and thus there exist u1, . . . , ui−1 ∈ R

such that

r = u1f
m−1
1 +

i−1∑
j=2

ujfj .

Rearranging (III.B.5.35.1) and substituting we obtain the following.

0 = fir − t1fm1 −
i−1∑
j=2

tjfj

= u1fif
m−1
1 +

i−1∑
j=2

fiujfj − t1fm1 −
i−1∑
j=2

tjfj

= fm−1
1 (u1fi − t1f1) +

i−1∑
j=2

fj(fiuj − tj)

Since fm−1
1 , f2, . . . , fi−1 is weakly R-regular, by Claim (1) we have

u1fi − f1t1, fiuj − tj ∈
〈
fm−1

1 , f2, . . . , fi−1

〉
for all j = 2, . . . , i − 1. Therefore u1fi ∈ 〈f1, f2, . . . , fi−1〉 and since f1, . . . , fi−1 is weakly R-regular, we

know u1 ∈ 〈f1, . . . , fi−1〉. Hence u1 =
∑i−1
j=1 vjfj for some v1, . . . , vi−1 ∈ R and we have

r = u1f
m−1
1 +

i−1∑
j=2

ujfj

= fm−1
1

i−1∑
j=1

vjfj +

i−1∑
j=2

ujfj

= v1f
m
1 +

i−1∑
j=2

fj(f
m−1
1 vj + uj) ∈ 〈fm1 , f2, . . . , fi−1〉 .

Therefore r = 0 ∈ R and thus fi is a non-zero-divisor on R. X

clm191112b.3 Claim (3). Let m1, . . . ,mn ∈ Z≥1. Then fm1
1 , fm2

2 , . . . , fmnn is weakly R-regular.
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Proof. We again induct on n and note the base case n = 1 is done by Claim (2). For the inductive
step, note that fm1

1 is a non-zero-divisor on R and f2, . . . , fn is weakly regular on R/ 〈fm1
1 〉 by Claim (2).

Therefore by the inductive hypothesis fm2
2 , . . . , fmnn is weakly regular on R/ 〈fm1

1 〉. X

Claim (4). Finally, we claim depth(I,R) ≤ depth(J,R), which will complete the proof by symmetry.

Proof. Let n = depth(I,R) and let f = f1, . . . , fn ∈ I be weakly R-regular. Since rad(I) = rad(J),
there exist m1, . . . ,mn ∈ Z≥1 such that fmii ∈ J for i = 1, . . . , n. Then by Claim (3) we know fm1

1 , . . . , fmnn ∈
J is weakly R-regular. By the definition of depth we have

depth(J,R) ≥ n = depth(I,R). X

�

Proof of Buchsbaum-Eisenbud (Continued). Recall that the only remaining case is for i = 2, and

we needed to show that depth(In−1(A), R)
?
≥ 2. By Lemma III.B.5.34, we have that

rad(Pfn−1(A)) = rad(In−1(A))

and by Proposition III.B.5.35 this implies

depth(Pfn−1(A), R) = depth(In−1(A), R).

Therefore,

depth(In−1(A), R) = depth(Pfn−1(A), R) ≥ 3 ≥ 2.
�

Exercises

Let x1, . . . , xn ∈ R, and let σ be an element of the symmetric group Sn. The goal of the following three
exercises is to prove that there is an isomorphism of Koszul complexes

KR(xσ(1), . . . , xσ(n)) ∼= KR(x1, . . . , xn). (†) eq190916a

Note that Exercise III.B.5.36 can be done with no knowledge of Koszul complexes.

e190910a Exercise III.B.5.36. Let the following commutative diagram of chain maps be given.

A
φ //

α

��

Y

γ

��
A′

φ′ // Y ′

e190910a.a (a) Prove that α and γ induce a well-defined chain map Λ: Cone(φ)→ Cone(φ′).
e190910a.b (b) Prove that if α and γ are isomorphisms, then so is Λ.

e190910b Exercise III.B.5.37. Let x, y ∈ R.

(a) Prove that there is an isomorphism between Koszul complexes KR(x, y) ∼= KR(y, x).

(b) More generally, let A be an R-complex, and set KR(x;A) = Cone(A
x−→ A) and KR(x, y;A) =

Cone(KR(y;A)
x−→ KR(y;A)). Define KR(y, x;A) similarly. Prove that KR(x, y;A) ∼= KR(y, x;A).

e190910c Exercise III.B.5.38. (a) Prove that if σ is an adjacent transposition σ = (i i + 1), then there is an
isomorphism (†).

(b) Prove that if σ ∈ Sn is arbitrary, then there is an isomorphism (†).

For the following two exercises, let R be a commutative ring with identity, and let x = x1, . . . , xn ∈ R. The
goal of the following two exercises is to show that 〈x〉Hi(K

R(x)) = 0 for all i. In particular, this proves that
if 〈x〉 = R, then KR(x) is exact.



EXERCISES 196

exr210722d Exercise III.B.5.39. Let φ : A → C be a chain map. We say that φ is null-homotopic if there is a
sequence of R-module homomorphisms s = {si : Ai → Ci+1 | i ∈ Z} such that φi = si−1∂

A
i + ∂Ci+1si for all

i. Diagrammatically, s and φ look like this

· · · // Ai+1

��

// Ai
∂Ai //

si

}} φi ��

Ai−1
//

si−1}} ��

· · ·

· · · // Ci+1
∂Ci+1

// Ci // Ci−1
// · · ·

though the triangles in this diagram do not commute in general.
Prove that if φ is null-homotopic, then Hi(φ) = 0 as a map Hi(A)→ Hi(C) for all i ∈ Z.

exr210722e Exercise III.B.5.40. (a) Prove that the homothety KR(x)
x1−→ KR(x) is null-homotopic, and conclude

that x1 Hi(K
R(x)) = 0 for all i.

(b) Prove that xj Hi(K
R(x)) = 0 for all i, j, and conclude that 〈x〉Hi(K

R(x)) = 0 for all i.
(c) Prove that the following conditions are equivalent.

(i) 〈x〉 = R
(ii) Hi(K

R(x)) = 0 for all i
(iii) H0(KR(x)) = 0

For the following two exercises, let k be a field, and set R = k[W,X, Y, Z]. Consider the ideals I =
〈WX,XY, Y Z〉 and J = 〈WZ,WX,XY, Y Z〉.

exr210722f Exercise III.B.5.41. (a) Compute the following Taylor resolutions, describing each differential as a
matrix: T = TR(WX,XY, Y Z) and U = TR(WZ,WX,XY, Y Z).

(b) Verify directly (without invoking Theorem III.B.4.8) that T is a resolution of R/I and that U is a
resolution of R/J .

exr210722g Exercise III.B.5.42. Consider the natural surjection π : R/I → R/J induced by the inclusion I ⊆ J .

(a) Explicitly construct a chain map Φ+ : T+ → U+ such that Φ−1 = π, describing the maps Φi for i ≥ 0
as matrices, and verifying that Φ+ is a chain map.

(b) Explicitly compute Cone(Φ), describing each differential as a matrix.
(c) Is Cone(Φ) a resolution? Justify your answer.

exr210722h Exercise III.B.5.43. Let k be a field. Set R = k[X,Y ] and consider the following matrices.

A =

X 0
Y X
0 Y

 B =


X 0 0
Y X 0
0 Y X
0 0 Y


exr210722h.a (a) Compute I = I2(A) and J = I3(B) and verify that depth(I,R),depth(J,R) ≥ 2.
exr210722h.b (b) Compute the Hilbert-Burch resolutions associated to A and B. Denote them by F and G respectively.
exr210722h.c (c) Verify directly (without invoking Theorem III.B.5.10) that F is a resolution of R/I and that G is a

resolution of R/J .
exr210722h.d (d) For n ≥ 4, describe a free resolution of R/〈X,Y 〉n.

exr210722i Exercise III.B.5.44. Let k be a field. Set S = k[V,W,X, Y, Z] and consider the following alternating
matrix.

C =


0 0 V W 0
0 0 0 X Y
−V 0 0 0 Z
−W −X 0 0 0

0 −Y −Z 0 0


(a) Compute K = Pf4(C) and verify that depth(K,S) ≥ 3.

itemb (b) Compute the Buchsbaum-Eisenbud resolution associated to C. Denote it by L.
(c) Verify directly (without invoking Theorem III.B.5.30) that L is a resolution of S/K.
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(d) Compute the Taylor resolution T associated to S/K, and explicitly construct a surjective chain map
Φ: T → L such that H0(Φ) is an isomorphism. Explain why Ker(Φ) is an exact sequence.



CHAPTER III.C

Differential Graded Algebra Resolutions

chapter290721c
We have covered several different types of resolutions so far, and some of them are a lot nicer than

others! However, each of them has a downside as well.

(1) Taylor resolutions for monomial ideals have a closed formula! , However, these resolutions are most
likely not minimal, so they are not efficient. /

(2) A minimal resolution for an ideal always exist! , However, they can be difficult to compute. /
(3) DG algebra resolutions have an extra ring structure, so they convey more information than other types

of resolutions! , However, they are not usually minimal. /

In this part, we will first discuss some definitions, properties, and examples relevant to DG algebra
resolutions, then talk about several applications of DG algebra resolutions.

III.C.1. Definitions, Properties, and Examples
section063021l

Throughout this chapter, assume that R is a commutative ring with identity. Recall that if X is an
R-complex and 0 6= x ∈ Xi, then the homological degree of x is |x| = i.

defn191114a Definition III.C.1.1. A commutative differential graded R-algebra (DG R-algebra) is an R-complex

A =

(
· · ·

∂A2 // A1

∂A1 // A0
// 0

)
equipped with a binary operation µij : Ai×Aj → Ai+j (we will write µij(a, b) = ab) satisfying the following
properties.

• µij is R-bilinear. Therefore, µij is also distributive. In particular, 0 · b = 0 = b · 0 for all b ∈ A.
• µij is unital, i.e., there exists 1 ∈ A0 such that 1 · a = a = a · 1 for all a ∈ Ai.
• µij is associative.

• µij is graded commutative, i.e., for all a, b ∈ A \ {0} one has ba = (−1)|a|·|b|ab and a2 = 0 whenever
|a| is odd. The second condition is automatic if 2 is a unit in R.

• µij satisfies the Leibniz rule, i.e., for all a, b ∈ A \ {0} one has ∂(ab) = ∂(a)b+ (−1)|a|a∂(b).

The convention for determining signs is that if we switch the order of two factors, multiply that term by
(−1)product of degrees.

note191114b Note III.C.1.2. Let A be a complex of free R-modules, with Ai = Rβi for all i ≥ 0 and Ai = 0 for all
i < 0. Let Bi be a basis of Ai over R.

(a) Any function fij : Bi × Bj → Ai+j extends uniquely to an R-bilinear function µij : Ai × Aj → Ai+j
so that fij = µij

∣∣
Bi×Bj

as in Exercise III.A.2.10. Therefore to define µij it suffices to specify it on the

basis vectors.
(b) The operation µij is unital in general if and only if it is unital on the basis vectors, and similarly for

associativity, graded commutativity, and the Leibniz rule. Exercises III.A.2.11 and III.A.2.12 show this
for the unital, associative, and graded commutative properties.

(c) There are a few ways to make the Leibniz rule easier to verify:

Claim. The Leibniz rule is automatic for products of the form 1 · b and b · 1.

Proof. Since 1 · b = b, then ∂(1 · b) = ∂(b). On the other hand,

∂(1)︸︷︷︸
=0

·b+ (−1)|1|︸ ︷︷ ︸
=1

1 · ∂(b) = ∂(b)

because |1| = 0 and because the mapping ∂ : A0 → 0 satisfies ∂(1) = 0. X

198
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Claim. The Leibniz rule is automatic for a2 when |a| is odd.

Proof. Since a2 = 0, then ∂(a2) = ∂(0) = 0. On the other hand,

∂(a) · a+ (−1)|a|︸ ︷︷ ︸
=−1

a · ∂(a) = ∂(a) · a− a∂(a)

= ∂(a) · a− (−1)|a||∂(a)|︸ ︷︷ ︸
=1

∂(a) · a

= ∂(a) · a− ∂(a) · a = 0

X

Claim. The Leibniz rule holds for ab if and only if the Leibniz rule holds for ba.

Proof. We show that if Leibniz rule hold for ab, then Leibniz rule holds for ba. The other impli-
cation is by symmetry. We will use that |∂(a)| = |a| − 1. We have

∂(ba) = (−1)|a||b|∂(ab)

= (−1)|a||b|[∂(a)b+ (−1)|a|a∂(b)]

= (−1)|a||b|∂(a)b+ (−1)|a||b|+|a|a∂(b)

= (−1)|a||b|+|∂(a)||b|b∂(a) + (−1)|a||b|+|a|+|a||∂(b)|∂(b)a

= (−1)|a||b|+|a||b|−|b|︸ ︷︷ ︸
=(−1)|b|

b∂(a) + (−1)|a||b|+|a|+|a||b|−|a|︸ ︷︷ ︸
=1

∂(b)a

= ∂(b)a+ (−1)|b|b∂(a).
X

ex191114c Example III.C.1.3. Let x, y ∈ R and set K = KR(x, y) with exterior basis

K =

 0 // R
e12

(−yx )
// R2
e1
e2

( x y ) // R
1=e∅

// 0

 .

The rules for multiplication on K are as follows:

• 1 · e∗ = e∗ = e∗ · 1 for ∗ ∈ {1, 2, 12, ∅}.
• e2

i = 0 for i = 1, 2.
• e1e2 = e12 = −e2e1.
• eie12 = 0 = e12ei and e2

12 = 0 for degree reasons.

With these definitions, Note III.C.1.2 implies that the unital, R-bilinear, and graded commutative properties

are automatically satisfied. To show associatitivity, we need to show a(bc)
?
= (ab)c for basis vectors a, b, c.

We split this into two cases below.

(a) If b = 1, then a(1 · c) = ac = (a · 1) · c. If a = 1 or c = 1, then we are done similarly.
(b) If |a| , |b| , |c| > 1, then |a(bc)| ≥ 3, so a(bc) = 0 = (ab)c.

We also need to check the Leibniz rule for the basis vectors. By our rules for multiplication above and by
symmetry, we need only check the following.

∂(e1e2) = ∂(e12) = xe2 − ye1 = ∂(e1)e2 + (−1)|e1|e1∂(e2) X

∂(e2e12) = 0 = ye12 − xe2
2 − ye12 = ye12 − xe2

2 + ye2e1 = ye12 − e2(xe2 − ye1) = ∂(e2)e12 − e2∂(e12) X

∂(e2
12) = ∂(0) = 0 = (xe2 − ye1)e12 + e12(xe2 − ye1) = ∂(e12)e12 + e12∂(e12) X

Our next result expands on Example III.C.1.3 by showing that all resolutions of R/I with length at
most 2 have DG algebra structures. Exercise III.C.3.18 deals with resolutions of length 3.

thm191119a Theorem III.C.1.4. Let I ≤ R be an ideal such that R/I has a resolution of the form

F =
(

0 // Rn // Rm // R // 0
)
.

Then F has the structure of a DG algebra.
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Proof. Let 1 ∈ R and e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be bases of R, Rm, and Rn, respectively.
Define multiplication on the basis vectors in the following way.

1 · a = a = a · 1
e2
i = 0, ∀i
eifj = 0 = fjei, ∀i, j
fifj = 0, ∀i, j

It remains to define eiej for i 6= j. The Leibniz rule dictates that

∂(eiej) = ∂(ei)ej − ei∂(ej) = xiej − xjei,

where xi = ∂(ei) ∈ R. Now we observe

∂(xiej − xjei) = xixj − xjxi = 0

and therefore xiej − xjei ∈ Im ∂F2 . Thus there exists some γij ∈ F2 = Rn such that ∂(γij) = xiej − xjei.
Since ∂F2 is injective, this γij is unique and we define eiej = γij , i.e., eiej is the unique element of F2 such
that ∂(eiej) = xiej − xjei.

As in Example III.C.1.3, associativity follows for degree reasons. To show graded commutivity we need
to show that ejei = −eiej for all i, j, for which it suffices to show that ∂(ejei) = −∂(eiej). By definition we
have

∂(ejei) = xjei − xiej = −(xiej − xjei) = −∂(eiej),

as desired. For the most part, the Leibniz rule is satisfied by definition. For instance, we have fifj ∈ F4 = 0
and ∂(fifj) ∈ F3 = 0, so the Leibniz rule is satisfied. What about eifj? For degree reasons we have
∂(eifj) = 0 and we therefore need to show 0 = ∂(ei)fj−ei∂(fj). Again noting that ∂F2 is injective, it suffices
to show that ∂ (∂(ei)fj − ei∂(fj)) = 0. The Leibniz rule in degree 1 is satisfied, so we have

∂ (∂(ei)fj − ei∂(fj)) = [∂(∂(ei))fj + ∂(ei)∂(fj)]− [∂(ei)∂(fj)− ei∂(∂(fj))] = 0,

as desired. �

Next, we demonstrate some general properties of DG algebras.

prop191119b Proposition III.C.1.5. Let A be a DG algebra. Then A0 is a commutative ring with identity under the
operations from A.

Proof. Since A0 is an R-module, it is an additive abelian group. Since A is a DG algebra, the multipli-
cation A0 × A0 → A0 is well-defined. It is also associative, unital, and distributive by assumption. Finally,
we see that for any a, b ∈ A0 we have

ba = (−1)|a||b|ab = (−1)0·0ab = ab. �

The following result shows that the homology modules of a DG algebra each have more than just a
module structure. We will use this in our applications to show that certain collections of homology modules
form graded commutative rings.

thm191119c Theorem III.C.1.6. Assume A is a DG algebra. Then

H(A) :=

(
· · · 0 // H1(A)

0 // H0(A) // 0

)

is also a DG algebra. Therefore

∞⊕
i=0

Hi(A) is a graded commutative ring with identity.

Proof Sketch. Recall that Zi(A) = Ker ∂Ai . One first shows that

Z(A) =

(
· · · 0 // Z1(A)

0 // Z0(A)
0 // 0

)
is a DG sub-algebra of A, i.e., that Z(A) is a subcomplex of A such that the multiplication on A induces a
multiplication on Z(A) making Z(A) into a DG algebra. One does this using a DG subalgebra test, which is
analogous to the familiar subring and subgroup tests: we need to show Z(A) is a subcomplex that is closed
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under multiplication with 1 ∈ Z0(A). It is a subcomplex since ∂Ai |Zi(A) = 0 for all i by definition of Zi(A).
We also know 1 ∈ A0 = Z0(A) and if we let z, w ∈ Z(A), then it follows that zw ∈ Z(A) since

∂(zw) = ∂(z)︸︷︷︸
=0

w ± z ∂(w)︸ ︷︷ ︸
=0

= 0.

Next, recalling that Bi(A) = Im ∂Ai+1, one sets

B(A) =

(
· · · 0 // B1(A)

0 // B0(A) // 0

)
and proves this is a DG ideal of Z(A), i.e., that B(A) is a subcomplex of Z(A) that absorbs multiplication
by elements of Z(A). The subcomplex condition is straightforward since Bi(A) ⊆ Zi(A). Let b ∈ B(A) and
z ∈ Z(A) and in order to show that zb, bz ∈ B(A), it suffices to show that bz ∈ B(A) (because of graded
commutivity). Let a ∈ A such that b = ∂(a) and observe that

∂(az) = ∂(a)z + (−1)|a|a∂(z)︸ ︷︷ ︸
=0

= bz,

so bz ∈ B(A).
For the third and final step, one shows that H(A) = Z(A)/B(A) is a DG algebra with differential and

multiplication induced from Z(A). Certainly the 0-differential on H(A) makes it into an R-complex. Most
of the work is done showing that the multiplication

Hi(A)×Hj(A) // Hi+j(A)

(a, b)
� // ab

is well-defined. If a = a′ and b = b′, then a− a′, b− b′ ∈ B(A). Therefore a− a′ = ∂(c) and b− b′ = ∂(d) for
some c, d ∈ Z(A). Thus a = a′ + ∂(c) and b = b′ + ∂(d), and since B(A) is a DG ideal we have

ab = a′b′ + a′∂(d) + ∂(c)b′ + ∂(c)∂(d)︸ ︷︷ ︸
∈B(A)

,

so ab = a′b′. To show that this makes H(A) a DG algebra, one checks that all other DG algebra axioms are
inherited from the corresponding axioms on Z(A). �

ex191121a Example III.C.1.7. Let R = k[X,Y ]/ 〈XY 〉 and x = X and y = Y and

K = KR(x, y) =

(
0 // R

(−yx )
// R2

( x y ) // R // 0

)
.

Recall that H0(K) = R/ 〈x, y〉 ∼= k, H1(K) ∼= k, and H2(K) = 0. Then

H = H(K) ∼=
(

0 // 0 // k
ε

0 // k
1

// 0

)
and

∞⊕
i=0

Hi(K) = k · 1⊕ k · ε (since ε2 = 0)

∼= k[Z]/
〈
Z2
〉

(where Z ∼ ε).

Exterior DG Algebra Structure on the Koszul Complex. Our next goal is to extend Example
III.C.1.3 again by showing that every Koszul complex has a DG algebra structure.

defn191121b Definition III.C.1.8. Let [n] = {1, . . . , n} for a positive integer n and x = x1, . . . , xn ∈ R and
K = KR(x). Let eΛ and eΓ be basis vectors of K, where Λ,Γ ⊆ [n]. Define

eΛeΓ =

{
0 if Λ ∩ Γ 6= ∅
sgn(Λ,Γ)eΛ∪Γ if Λ ∩ Γ = ∅,

where sgn(Λ,Γ) is the sign of the permutation used to put Λ∪Γ into strictly increasing order. To understand
the two cases in the display, notice that if Λ = {λ1 < · · · < λj} and Γ = {γ1 < · · · < γk}, then |eΛ| = j and
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|eΓ| = k, so we must have |eΛeΓ| = j + k, that is, in order for eΛeΓ to possibly be a non-zero multiple of
eΛ∪Γ, we must have Λ ∩ Γ 6= ∅.

ex191121c Example III.C.1.9. Consider the following three products of basis vectors:

• Let Λ = {1 < 3} and Γ = {2 < 3}. Then e13e23 = 0 since Λ ∩ Γ 6= ∅.
• Let Λ = {1 < 3} and Γ = {2 < 4}, and consider e13e24. Then

Λ ∪ Γ = {1 < 3, 2 < 4} =
(
2 3

)
{1 < 2 < 3 < 4},

so the permutation used to put Λ∪Γ in order is odd (i.e., sgn(Λ,Γ) = −1). Therefore e13e24 = −e1234.
• Consider e24e13. Then as in the preceding bullet, we find that e24e13 = −e1234. Let’s check graded

commutativity for this product:

e24e13
?
= (−1)|e13||e24|e13e24 = (−1)2·2e13e24 = e13e24 = −e1234 = e24e13.X

Also, we check the Leibniz rule for the first product above. On the one hand, ∂(e13e23) = ∂(0) = 0. On the
other hand, we have

∂(e13)e23 + e13∂(e23) = (x1e3 − x3e1)e23 + e13(x2e3 − x3e2)

= x1 e3e23︸ ︷︷ ︸
=0

−x3 e1e23︸ ︷︷ ︸
=e123

+x2 e13e3︸ ︷︷ ︸
=0

−x3 e13e2︸ ︷︷ ︸
=−e123

= −x3e123 + x3e123 = 0.X

Next, we work to make our treatment of sgn(Λ,Γ) rigorous.

defn191121d Definition III.C.1.10. Let i = (i1, . . . , in) where all of the ik are distinct positive integers. Define

S(i) = {(p, q) ∈ [n]× [n] | p < q and ip > iq } .

In words, S(i) counts the entries of i not in strictly ascending order. Also define

σ(i) = (−1)|S(i)|.

ex191121e Example III.C.1.11. (a) Let i = (1, 3, 2, 4). The second and third positions are out of order, so S(i) =
{(2, 3)} and σ(i) = (−1)1 = −1.

(b) Let j = (2, 4, 1, 3). Then there are three pairs that are out of order, so

S(j) = {(1, 3), (2, 3), (2, 4)} and σ(j) = (−1)3 = −1.

prop191121f Proposition III.C.1.12. Let i be as in Definition III.C.1.10 and let τ ∈ Sn. Define τ ·i = (iτ(1), . . . , iτ(n)).
Write τ as a product of adjacent transpositions τ = τ1 · · · τ`. Then

σ(τ · i) = (−1)`σ(i).

Proof. We prove this by induction on `.
Base case: Let ` = 1. Then τ is an adjacent transposition, so can be written as τ =

(
x x+ 1

)
. Then

S(τ · i) = S(i1, . . . , ix−1, ix+1, ix, ix+2, . . . , in)

=

{
S(i) ∪ {(x, x+ 1)} if ix < ix+1

S(i) \ {(x, x+ 1)} if ix+1 < ix.

Then

|S(τ · i)| =

{
|S(i)|+ 1 if ix < ix+1

|S(i)| − 1 if ix+1 < ix.

Therefore

σ(τ · i) = (−1)|S(i)|±1 = −(−1)|s(i)| = −σ(i).

We omit the inductive case here since it is routine. �

cor191121g Corollary III.C.1.13. Let Λ = {λ1 < · · · < λj} and Γ = {γ1 < · · · < γk}. Assume Λ ∩ Γ = ∅. Then

sgn(Λ,Γ) = σ(λ1, . . . , λj , γ1, . . . , γk).
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Proof. Set i = (i1, . . . , in). Let τ = τ1, . . . , τ` be as in Proposition III.C.1.12 so that τ · i is in strictly
ascending order. Then S(τ · i) = ∅, so σ(τ · i) = (−1)0 = 1. Therefore,

σ(i) = (−1)`σ(τ · i) = (−1)` = sgn(Λ,Γ).

�

Now we are in position to verify that every Koszul complex is a DG algebra. We accomplish this in a
sequence of theorems.

thm191121h Theorem III.C.1.14. The exterior product on K is associative.

Proof. It suffices to show that (eΛeΓ)eΩ = eΛ(eΓeΩ) for all Λ,Γ,Ω ⊆ [n]. If Λ∩Γ 6= ∅, then both sides
are zero, and similarly if Λ ∩ Ω 6= ∅ or Γ ∩ Ω 6= ∅. Thus we assume that Λ, Γ, and Ω are pairwise disjoint.
Then

(eΛeΓ)eΩ = sgn(Λ,Γ) · sgn(Λ ∪ Γ,Ω)eΛ∪Γ∪Ω

eΛ(eΓeΩ) = sgn(Γ,Ω) · sgn(Λ,Γ ∪ Ω)eΛ∪Γ∪Ω.

Notice that the coefficients of the above items are both equal to

σ(λ1, . . . , λj , γ1, . . . , γk, ω1, . . . , ω`),

so the two products are equal. �

thm191121i Theorem III.C.1.15. The exterior product on K is graded commutative.

Proof. If Λ 6= 0, then e2
Λ = 0. If Λ ∩ Γ 6= ∅, then eΛeΓ = 0 = (−1)|Λ||Γ|eΓeΛ. So assume Λ ∩ Γ = ∅.

Then we claim
sgn(Γ,Λ) = (−1)|Γ||Λ| sgn(Λ,Γ).

To show this, we want to show that the right hand side describes the sign of a permutation that puts Γ ∪Λ
in strictly ascending order. This happens in two steps: first, (−1)|Λ||Γ| moves all γ ∈ Γ to the right of Λ;
second, sgn(Λ,Γ) puts Λ ∪ Γ into strictly ascending order. Therefore,

eΓeΛ = sgn(Γ,Λ)eΓ∪Λ = (−1)|Γ||Λ| sgn(Λ,Γ)eΛ∪Γ = (−1)|Γ||Λ|eΛeΓ.

�

rmk191121j Remark. Even though squares of basis vectors are equal to zero, squares of linear combinations of basis
vectors are not necessarily equal to zero. Consider the following two examples assuming 2 6= 0 in R:

(a) (e1 + e2)2 = e2
1 + e1e2 + e2e1 + e2

2 = e1e2 − e1e2 = 0.
(b) (e12 + e34)2 = e2

12 + e12e34 + e34e12 + e2
34 = e12e34 + e12e34 = 2e12e34 6= 0.

thm191126a Theorem III.C.1.16. The Koszul complex K = KR(x) is a DG algebra with exterior multiplication.

Proof. We have already shown that every property other than the Leibniz rule is satisfied, so we want
to show that

∂(eΛeΓ)
?
= ∂(eΛ)eΓ + (−1)|Λ|eΛ∂(eΓ).

Define φ(m,Λ) = |{λ ∈ Λ | λ < m}|, so

∂(eΛ) =
∑
λ∈Λ

(−1)φ(λ,Λ)xλeΛ\{λ}.

Then the right hand side of the Leibniz rule looks like∑
λ∈Λ

(−1)φ(λ,Λ)xλeΛ\{λ}eΓ + (−1)|Λ|
∑
γ∈Γ

(−1)φ(γ,Γ)xγeΛeΓ\{γ}.

We have three cases to consider:
Case 1: Suppose |Λ ∩ Γ| ≥ 2. Then |(Λ \ {λ}) ∩ Γ| ≥ 1, so eΛ\{λ}eΓ = 0 for all λ ∈ Λ. Similarly, for all

γ ∈ Γ, we have eΛeΓ\{γ} = 0. Therefore, the entire right hand side of the Leibniz rule is equal to 0. Also,
the left hand side is ∂(eΛeΓ) = ∂(0) = 0, so the Leibniz rule is satisfied.

Case 2: Suppose |Λ ∩ Γ| = 1, say λp0
= γq0 ∈ Λ ∩ Γ. The left hand side of the Leibniz rule is 0, so we

want to show the right hand side is also 0. For λ 6= λp0
, we have λp0

∈ (Λ \ {λ}) ∩ Γ, so eΛ\{λ}eΓ = 0.
Similarly, for γ 6= γq0 , we have eΛeΓ\{γ} = 0. So the right hand side reduces to

(−1)φ(λp0
,Λ)xλp0

eΛ\{λp0
}eΓ + (−1)|Λ|+φ(γq0 ,Γ)xγq0 eΛeΓ\{γq0}.
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Notice that (Λ \ {λp0}) ∪ Γ = Λ ∪ Γ = Λ ∪ (Γ \ {γq0}) because λp0 ∈ Γ and γq0 ∈ Λ. Then the right hand
side simplifies to

(−1)φ(λp0
,Λ) sgn(Λ \ {λp0},Γ)xλp0

eΛ∪Γ + (−1)|Λ|+φ(γq0 ,Γ) sgn(Λ,Γ \ {γq0})xγq0 eΛ∪Γ.

We want to show that the two terms in the display above have opposite signs. Consider listing the elements
in (Λ \ {λp0

}) ∪ Γ:

(λ1, . . . , λp0−1, λp0+1, . . . , λj , γ1, . . . , γq0−1, γq0 , . . . , γk).

Notice that (q0 − 1) + (j − p0) adjacent transpositions are needed to move γq0 to between λp0−1 and λp0+1,
and φ(λp0

,Λ) = p0 − 1. Then the sign of the first term is

(−1)φ(λp0 ,Λ) sgn(Λ \ {λp0
},Γ) = (−1)(p0−1)+(q0−1)+(j−p0) sgn(Λ,Γ \ {γq0}) = (−1)q0+j sgn(Λ,Γ \ {γq0}).

Also, notice that |Λ| = j and φ(γq0 ,Γ) = q0 − 1, so the sign of the second term is

(−1)|Λ|+φ(γq0 ,Γ) sgn(Λ,Γ \ {γq0}) = (−1)j+q0−1 sgn(Λ,Γ \ {γq0}) = −(−1)j+q0 sgn(Λ,Γ \ {γq0}).
Therefore the signs of the two terms are opposites, so the two terms cancel.

Case 3: Suppose Λ ∩ Γ = ∅. Then (Λ \ {λ}) ∩ Γ = ∅ = Λ ∩ (Γ \ {γ}) for all λ ∈ Λ and γ ∈ Γ. The right
hand side of the Leibniz rule is∑
λ∈Λ

(−1)φ(λ,Λ)xλeΛ\{λ}eΓ + (−1)|Λ|
∑
γ∈Γ

(−1)φ(γ,Γ)xγeΛeΓ\{γ}

=
∑
λ∈Λ

(−1)φ(λ,Λ) sgn(Λ \ {λ},Γ)xλe(Λ\{λ})∪Γ +
∑
γ∈Γ

(−1)|Λ|+φ(γ,Γ) sgn(Λ,Γ \ {γ})xγeΛ∪(Γ\{γ}).

The left hand side of the Leibniz rule is

∂(eΛeΓ) = sgn(Λ,Γ)∂(eΛ∪Γ)

= sgn(Λ,Γ)
∑

ζ∈Λ∪Γ

(−1)φ(ζ,Λ∪Γ)xζe(Λ∪Γ)\{ζ}

= sgn(Λ,Γ)

∑
λ∈Λ

(−1)φ(λ,Λ∪Γ)xλe(Λ\{λ})∪Γ +
∑
γ∈Γ

(−1)φ(γ,Λ∪Γ)xγeΛ∪(Γ\{γ})

 .
Now we compare the signs of both terms in the left hand side and right hand side of the Leibniz rule:

(−1)φ(λ,Λ)︸ ︷︷ ︸
move λ to the
beginning of Λ

sgn(Λ \ {λ},Γ)︸ ︷︷ ︸
order the
leftovers

?
= sgn(Λ,Γ)︸ ︷︷ ︸

order all
elements

(−1)φ(λ,Λ∪Γ)︸ ︷︷ ︸
move λ to the

beginning of Λ ∪ Γ

,X

(−1)φ(γ,Γ)︸ ︷︷ ︸
move γ to the
beginning of Γ

(−1)|Λ|︸ ︷︷ ︸
move γ past

all elements of Λ

sgn(Λ,Γ \ {γ})︸ ︷︷ ︸
order the
leftovers

?
= sgn(Λ,Γ)︸ ︷︷ ︸

order all
elements

(−1)φ(γ,Λ∪Γ)︸ ︷︷ ︸
move γ to the

beginning of Λ ∪ Γ

.X

Therefore the Leibniz rule is satisfied. �

Next, we use the results about the Koszul complex to verify that every Taylor resolution is a DG algebra.

defn191126b Definition III.C.1.17. Let R = k[X1, . . . , Xd] and f1, . . . , fn ∈ JRK. For all Λ = {λ1 < · · · < λj} ⊆ [n],
set

fΛ = lcm({fλ | λ ∈ Λ}) = lcm(fλ1
, . . . , fλj ).

For Λ,Γ ⊆ [n], consider eΛ, eΓ ∈ T = TR(f). Define

eΛeΓ =

{
0 if Λ ∩ Γ 6= ∅
sgn(Λ,Γ) fΛfΓ

fΛ∪Γ
eΛ∪Γ if Λ ∩ Γ = ∅.

ex191126c Example III.C.1.18. Consider the Taylor resolution T = TR(XY,XZ, Y Z):

0 // R
e123

(
1
−1
1

)
// R3
e12
e13
e23

(
−Z −Z 0
Y 0 −Y
0 X X

)
// R3
e1
e2
e3

(XY XZ Y Z ) // R
1=e∅

// 0.
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Then:

e2e1 = −f2f1

f12
e12 = −XZ ·XY

XY Z
e12 = −Xe12,

e3e13 = 0,

e3e12 = +
f3f12

f123
e123 =

Y Z ·XY Z
XY Z

= Y Ze123.

thm191126d Theorem III.C.1.19. Multiplication on T is associative.

Proof. It suffices to show that (eΛeΓ)eΩ = eΛ(eΓeΩ) where Λ,Γ,Ω ⊆ [n] are pairwise disjoint. The left
hand side simplifies to

(eΛeΓ)eΩ =

(
sgn(Λ,Γ)

fΛfΓ

fΛ∪Γ
eΛ∪Γ

)
eΩ

= sgn(Λ,Γ) sgn(Λ ∪ Γ,Ω)
fΛfΓ

fΛ∪Γ

fΛ∪ΓfΩ

f(Λ∪Γ)∪Ω
e(Λ∪Γ)∪Ω

= sgn(Λ,Γ) sgn(Λ ∪ Γ,Ω)
fΛfΓfΩ

fΛ∪Γ∪Ω
eΛ∪Γ∪Ω.

The right hand side simplifies to

eΛ(eΓeΩ) = eΛ

(
sgn(Γ,Ω)

fΓfΩ

fΓ∪Ω
eΓ∪Ω

)
= sgn(Γ,Ω) sgn(Λ,Γ ∪ Ω)

fΛfΓ∪Ω

fΛ∪(Γ∪Ω)

fΓfΩ

fΓ∪Ω
eΛ∪(Γ∪Ω)

= sgn(Γ,Ω) sgn(Λ,Γ ∪ Ω)
fΛfΓfΩ

fΛ∪Γ∪Ω
eΛ∪Γ∪Ω.

Notice that the monomial coefficients agree and the signs agree using the same proof as for the Koszul
complex in Theorem III.C.1.14. �

thm191126e Theorem III.C.1.20. Multiplication on T is graded commutatitive.

Proof. First, e2
Λ = 0 for all Λ 6= ∅. We want to show that the following equation holds for all Λ,Γ ⊆ [n]:

eΛeΓ
?
= (−1)|Λ||Γ|eΓeΛ.

This is automatic if Λ∩Γ 6= ∅, so assume Λ∩Γ = ∅. The signs agree using the same proof as for the Koszul
complex in Theorem III.C.1.15 and the monomial coefficients are

fΓfΛ

fΓ∪Λ
=
fΛfΓ

fΛ∪Γ
.

�

thm191126f Theorem III.C.1.21. The Taylor resolution T = TR(f) is a DG algebra.

Proof. We want to show that the Leibniz rule is satisfied on basis vectors eΛ, eΓ. We have three cases
to consider, as in the proof of Theorem III.C.1.16.

Case 1: Suppose |Λ ∩ Γ| ≥ 2. This case follows the same process as in the proof of Theorem III.C.1.16.
Case 2: Suppose |Λ ∩ Γ| = 1, say λp0

= γq0 ∈ Λ ∩ Γ. The left hand side of the Leibniz rule is 0, so we
want to show the right hand side is also 0. For λ 6= λp0

, λp0
∈ (Λ \ {λ}) ∩ Γ, so eΛ\{λ}eΓ = 0. Similarly, for

γ 6= γq0 , eΛeΓ\{γ} = 0. So the right hand side of the Leibniz rule reduces to

(−1)φ(λp0 ,Λ) fΛ

fΛ\{λp0}
eΛ\{λp0}eΓ + (−1)|Λ|+φ(γq0 ,Γ) fΓ

fΓ\{γp0}
eΛeΓ\{γq0}

= ± fΛ

fΛ\{λp0
}

fΛ\{λp0}fΓ

f(Λ\{λp0
})∪Γ

e(Λ\{λp0})∪Γ ∓
fΓ

fΓ\{γq0}

fΛfΓ\{γq0}

fΛ∪(Γ\{γq0})
eΛ∪(Γ\{γq0}

= ±fΛfΓ

fΛ∪Γ
eΛ∪Γ ∓

fΓfΛ

fΛ∪Γ
eΛ∪Γ = 0

where the signs in the terms are opposites as in the proof of Theorem III.C.1.16.
Case 3: Suppose Λ∩Γ = ∅. As in Case 2, this is similar to Case 3 in the proof of Theorem III.C.1.16. �
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III.C.2. General Construction of DG Algebra Resolutions
section063021m

Throughout this chapter, assume R is a noetherian commutative ring with identity and I ≤ R is an
ideal and R = R/I.

def191203a Definition III.C.2.1. A DG algebra resolution of R over R is a free resolution A of R over R such that
A is a DG R-algebra.

ex191202b Example III.C.2.2. (a) If f ∈ R is a weakly R-regular sequence, then the Koszul complex KR(f) is a
DG algebra resolution over R of R/ 〈f〉.

(b) If R = k[X1, . . . , Xd] is a polynomial ring and f ∈ [|R|], then the Taylor resolution TR(f) is a DG algebra
resolution of R/ 〈f〉.

Goals. (1) There exists a DG algebra resolution of R over R.
(2) If R = k[X1, . . . , Xd], then R has a bounded DG algebra resolution over R.

strat210801a.astrat210801a Strategies. (1) Start with K = KR(f) where I = 〈f〉. Then K is a DG algebra and H0(K) = R/I,
but this is not generally a resolution, because usually H1(K) 6= 0. Then we will reduce the homology
degree-by-degree in a manner similar to the algorithm kernel-surject-kernel-surject-....

strat210801a.b (2) For the special case when R = k[X1, . . . , Xd], Hilbert’s Syzygy Theorem implies we can truncate to get
a bounded resolution. We then need to show that this truncation is a DG algebra.

disc191203c Discussion III.C.2.3. For strategy (1), how does one reduce homology? Start with any DG algebra A
(some approximation of a resolution of R). Let z ∈ Zi(A) such that 0 6= z ∈ Hi(A). Build a new DG algebra
A[y] such that A is a DG subalgebra of A[y] and y is a variable and

Hj(A[y]) =

Hj(A) ∀j < i
Hi(A)

S
j = i,

where in the latter case S ⊆ Hi(A) is a submodule such that z ∈ S. So the homology of A[y] in degree less
than i is the same as the homology of A, but the homology of A[y] in degree i requires one fewer generator
(assuming z is a generator of Hi(A)). Then start with A = KR(f) where I = 〈f〉. Let z1,1, . . . , z1,m ∈ Z1(A)

such that H1(A) = 〈z1,1, . . . , z1,m〉. Construct A(1) = A[y1,1, . . . , y1,m] such that H0(A(1)) = R and

H1(A(1)) = H1(A)/ 〈z1,1, . . . , z1,m〉 = 0.

We then repeat this process for H`(A
(1)) for ` ≥ 2 in order to construct a DG algebra resolution of R. Most

of the remainder of this chapter is devoted to filling in the details of this argument.

def191203d Definition III.C.2.4. Let A be a DG algebra over R and let z ∈ Zi(A) such that i ≥ 0 is even. Let y
be a symbol and define the degree of y to be |y| = i + 1 (odd). Define A[y] as follows. The R-modules in
the resolution are given by

A[y]n = An ⊕An−(i+1)y =
{
α+ ay

∣∣ α ∈ An and a ∈ An−(i+1)

}
(so A[y]n is an R module) and the differentials in the resolution are given by

∂A[y]
n (α+ ay) = ∂An (α) + ∂An−(i+1)(a)y + (−1)|a|az,

so they are R-linear, satisfy the Leibniz rule for elements of the form ay with ∂
A[y]
i+1 (y) = z. We define

multiplication as follows. Since |y| is odd (i.e,, |y| ≡ 1 (mod 2)), we set y2 = 0 and

yb = (−1)|y||b|by = (−1)|b|by.

We also set

(α+ ay)(β + by) = αβ + αby + ayβ + ayby︸︷︷︸
=0 ∵ y2=0

= αβ + (αb+ (−1)|β|aβ)y.

These definitions merit reality checks. For the differential, since α + ay ∈ A[y]n, we know α ∈ An and
a ∈ An−(i+1). Also note

∂An (α) ∈ An−1 ⊆ An−1 ⊕An−1−(i+1)y = A[y]n−1
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and

∂An−(i+1)(a)︸ ︷︷ ︸
∈An−(i+1)−1

· y︸︷︷︸
∈A[y]i+1

∴
∈ A[y]n−1.

Since a ∈ An−(i+1) and z ∈ Ai, we also have az ∈ An−1 ⊆ A[y]n−1, so the differential lands as we would
like. Similarly, multiplication defined A[y]n ×A[y]m → A[y]m+n lands well also.

thm191203e Theorem III.C.2.5. Using the notation of Definition III.C.2.4 we have the following.

thm191203e.a (a) A[y] is a DG algebra.
thm191203e.b (b) If An is free for all n, then A[y]n is free for all n.

thm191203e.c (c) A[y]n = An and ∂
A[y]
n = ∂An for all n ≤ i and therefore Hn(A[y]) = Hn(A) for all n < i.

thm191203e.d (d) A ⊆ A[y] is a DG subalgebra.
thm191203e.e (e) Hi(A[y]) ∼= Hi(A)/S where S ⊆ Hi(A) is a submodule such that z ∈ S.
thm191203e.f (f) If w ∈ Zi(A), then w ∈ Zi(A[y]), i.e., Zi(A) ⊆ Zi(A[y]).

Proof. (a) This part is tedious, but routine. For instance, A[y] is a complex since using the Leibniz
rule in A we see that

∂(∂(α+ ay)) = ∂
(
∂(α) + ∂(a)y + (−1)|a|az

)
= ∂(∂(α))︸ ︷︷ ︸

=0

+∂(∂(a)y) + (−1)|a|∂(az)

= ∂(∂(a))︸ ︷︷ ︸
=0

y + (−1)|a|−1∂(a) ∂(y)︸︷︷︸
=z

+(−1)|a|[∂(a)z + (−1)|a|a ∂(z)︸︷︷︸
=0

]

= 0.

As another for instance, one considers

1A[y] = 1A + 0Ay ∈ A[y]0

and checks that this is the multiplicative identity.

(b) This holds since the direct sum of free modules is free.

(c) If n ≤ i, then

n− (i+ 1) = n− i− 1 < n− i ≤ 0

and therefore

A[y]n = An ⊕An−(i+1)y︸ ︷︷ ︸
=0

= An ⊕ 0 = An.

Hence we have ∂(α+ 0y) = ∂(α) and therefore ∂
A[y]
n = ∂An (for these n). Thus we have

A[y] = · · · // A[y]i+1
// A[y]i

∂
A[y]
i

∂Ai

‖ // A[y]i−1

∂
A[y]
i−1

∂Ai−1

‖ // · · ·

Ai

‖

Ai−1

‖

and therefore Hn(A[y]) = Hn(A) for n < i.

(d) ∂(α+ 0y) = ∂(α) and (α+ 0y)(β + 0y) = αβ etc.
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(e) Since the inclusion A ⊆ A[y] is a chain map by part d, there exists a short exact sequence

0 // A
⊆ // A[y]

π // A[y]/A // 0

...

��

...

��

...

��
y∈ i

		

0 // Ai+1
//

��

Ai+1 ⊕A0y //

��

A0y //

��

0

z∈

0 // Ai //

��

Ai //

��

0 //

��

0

0 // Ai−1
//

��

Ai−1
//

��

0 //

��

0

...
...

...

Then the long exact sequence in homology yields

· · · // Hi+1 (A[y]/A)
ð //

‖

Hi(A) // Hi(A[y]) //

∼ =

0.

A0y

Im ∂
3 y Hi(A)

Im ð

We set S = Imð and a diagram chase shows that z = ð(y) ∈ S by definition of ð.

(f) We simply observe that

∂A[y](w) = ∂A[y](w + 0y) = ∂A(w) = 0.

�

note191205a Note III.C.2.6. Use the notation from Definition III.C.2.4.

note191205a.a (a) First, observe that ΣiA
z−→ A is a chain map. Then as an R-complex, we get

A[y] ∼= Cone(ΣiA
z−→ A).

However, A[y] has an extra DG algebra structure that the mapping cone does not convey.
note191205a.b (b) Second, we make two observations about the Leibniz rule. First, use graded commutativity on the

Leibniz rule to rewrite the second term as follows:

∂(ab) = ∂(a)b+ (−1)|a|a∂(b)

= ∂(a)b+ (−1)|a|+|a||∂(b)|∂(b)a

= ∂(a)b+ (−1)|a||b|∂(b)a

Then we generalize the Leibniz rule to a product of m terms inductively as follows:

∂(a1 · · · am) =

m∑
j=1

(−1)
∑j−1
t=1 |at|a1 · · · aj−1∂(aj)aj+1 · · · am

=

m∑
j=1

(−1)(
∑j−1
t=1 |at|)|aj |∂(aj)a1 · · · aj−1aj+1 · · · am.

Now we extend our definition for multiple elements of Zi(A) where i is fixed and even.
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defn191205b Definition III.C.2.7. Let A be a DG algebra and z1, . . . , zm ∈ Zi(A) such that i ≥ 0 is even. Define

A[y] = A[y1, . . . , ym] = A[y1, . . . , ym−1][ym]

and ∂(yj) = zj for all j = 1, . . . ,m. This is inductively well-defined because zm ∈ Zi(A) ⊆ Zi(A[y1, . . . , ym−1])
by Theorem III.C.2.5f.

thm191205c Theorem III.C.2.8. Using the notation of Definition III.C.2.7 we have the following.

thm191205c.a (a) A[y] is a DG algebra.
thm191205c.b (b) If An is free for all n, then A[y]n is free for all n.

thm191205c.c (c) A[y]n = An and ∂
A[y]
n = ∂An for all n ≤ i and therefore Hn(A[y]) = Hn(A) for all n < i.

thm191205c.d (d) A ⊆ A[y] is a DG subalgebra.
thm191205c.e (e) Hi(A[y]) ∼= Hi(A)/S where S ⊆ Hi(A) is a submodule such that z1, . . . , zm ∈ S. In particular, if

Hi(A) = 〈z1, . . . , zm〉, then Hi(A[y]) = 0.
thm191205c.f (f) If w ∈ Zi(A), then w ∈ Zi(A[y]), i.e., Zi(A) ⊆ Zi(A[y]).

Proof. Induct on m. �

note191205d Note III.C.2.9. Use the notation from Definition III.C.2.7. The elements in A[y] are finite sums of
terms of the form ayp1

· · · yp` , where a ∈ A and 1 ≤ p1 < · · · < p` ≤ m. Also,

|ayp1
· · · yp` | = |a|+ |yp1

|+ · · ·+ |yp` | = |a|+ `(i+ 1).

and by Note III.C.2.6b the differential applied to such terms yields

∂(ayp1
· · · yp`) = ∂(a)yp1

· · · yp` + (−1)|a|a∂(yp1
· · · yp`)

= ∂(a)yp1 · · · yp` + (−1)|a|a
∑̀
j=1

(−1)|ypj |
∑j−1
t=1 |ypt |∂(ypj )yp1 · · · ypj−1ypj+1 · · · yp`

= ∂(a)yp1
· · · yp` + (−1)|a|a

∑̀
j=1

(−1)j−1∂(ypj )yp1
· · · ypj−1

ypj+1
· · · yp`

where the last line comes about because |ypt | = i + 1 is odd, i.e., |ypt | ≡ 1 (mod 2). Notice that these
operations are similar to those on the Koszul complex. Furthermore, multiplication of two such terms is
given by

(ayp1
· · · yp`)(byq1 · · · yqk) =

{
0 if pr = qs for some r, s

(−1)|b|`σ(p1, . . . , p`, q1, . . . , qk)abyt1 · · · yt`+k otherwise,

where t1 < · · · < t`+k and {t1, . . . , t`+k} = {p1, . . . , p`, q1, . . . , qk}.

Now we move to the case where i is odd.

defn191205e Definition III.C.2.10. Let A be a DG algebra and z ∈ Zi(A) such that i > 0 is odd. Let y be a symbol
so that |y| = i+ 1 is even. Define A[y] so that the R-modules are as follows:

A[y]n = An ⊕An−(i+1)y ⊕An−2(i+1)y
2 ⊕ · · · .

This sum is finite because n− j(i+ 1) < 0 for j � 0, so An−j(i+1) = 0 for all j � 0. Furthermore, elements

in A[y]n look like a0 + a1y + a2y
2 + · · · for aj ∈ An−j(i+1). Let ∂(y) = z, then

∂(y2) = ∂(y · y) = ∂(y)y + (−1)|y|︸ ︷︷ ︸
=1

y∂(y) = 2∂(y)y = 2zy.

Inductively, we have ∂(yj) = jzyj−1 for j ≥ 0. Notice that this looks like the power rule for derivatives.
Then we can define the differential on A[y]n as

∂

∑
j

ajy
j

 =
∑
j

(
∂(aj)y

j + (−1)|aj |aj · jzyj−1
)
.
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Multiplication is similar to the multiplication in Definition III.C.2.4, but now there are more terms. We
define multiplication as ∑

j

ajy
j

(∑
k

bky
k

)
=
∑
j,k

ajbky
j+k,

where we can swap the order of yj and bk because
∣∣yj∣∣ = j |y| is even.

thm191205f Theorem III.C.2.11. Using the notation of Definition III.C.2.10 we have the following.

thm191205f.a (a) A[y] is a DG algebra.
thm191205f.b (b) If An is free for all n, then A[y]n is free for all n.

thm191205f.c (c) A[y]n = An and ∂
A[y]
n = ∂An for all n ≤ i and therefore Hn(A[y]) = Hn(A) for all n < i.

thm191205f.d (d) A ⊆ A[y] is a DG subalgebra.
thm191205f.e (e) Hi(A[y]) ∼= Hi(A)/S where S ⊆ Hi(A) is a submodule such that z ∈ S.
thm191205f.f (f) If w ∈ Zi(A), then w ∈ Zi(A[y]), i.e., Zi(A) ⊆ Zi(A[y]).

Proof. Argue as in the proof of Theorem III.C.2.5. �

defn191205g Definition III.C.2.12. Let A be a DG algebra and z1, . . . , zm ∈ Zi(A) such that i > 0 is odd. Define

A[y] = A[y1, . . . , ym] = A[y1, . . . , ym−1][ym]

and ∂(yj) = zj for all j = 1, . . . ,m. This is inductively well-defined because zm ∈ Zi(A) ⊆ Zi(A[y1, . . . , ym−1])
by Theorem III.C.2.11(f).

thm191205h Theorem III.C.2.13. Using the notation of Definition III.C.2.12 we have the following.

thm191205h.a (a) A[y] is a DG algebra.
thm191205h.b (b) If An is free for all n, then A[y]n is free for all n.

thm191205h.c (c) A[y]n = An and ∂
A[y]
n = ∂An for all n ≤ i and therefore Hn(A[y]) = Hn(A) for all n < i.

thm191205h.d (d) A ⊆ A[y] is a DG subalgebra.
thm191205h.e (e) Hi(A[y]) ∼= Hi(A)/S where S ⊆ Hi(A) is a submodule such that z1, . . . , zm ∈ S. In particular, if

Hi(A) = 〈z1, . . . , zm〉, then Hi(A[y]) = 0.
thm191205h.f (f) If w ∈ Zi(A), then w ∈ Zi(A[y]), i.e., Zi(A) ⊆ Zi(A[y]).

Proof. Induct on m. �

We can now prove our first goal of the section.

thm191205i Theorem III.C.2.14. There exists a DG algebra resolution of R over R.

Proof. Recall that I = f and R = R/I. We construct an ascending chain of DG algebras that
approximate the desired resolution. Let

A(0) = KR(f).

Because of our noetherian assumption, there exist z1,1, . . . , z1,m1 ∈ Z1(A(0)) so thatH1(A(0)) = 〈z1,1, . . . , z1,m1〉.
Then define

A(1) = A(0)[y1,1, . . . , y1,m1
],

where ∂(y1,j) = z1,j for all j = 1, . . . ,m1 and |y1,j | = 2. We must have H0(A(1)) = R and H1(A(1)) = 0 by

Theorem III.C.2.13(e). Furthermore, the A
(1)
j are finitely generated and free for all j. Therefore, there exist

z2,1, . . . , z2,m2
∈ Z2(A(1)) so that H2(A(1)) = 〈z2,1, . . . , z2,m2〉. Then define

A(2) = A(1)[y2,1, . . . , y2,m2 ],

where ∂(y2,j) = z2,j for all j = 1, . . . ,m2 and |y2,j | = 3. Continuing in this fashion, we find that A(h)

for h ≥ 1 is a free DG algebra that satisfies H0(A(h)) = R and Hj(A
(h)) = 0 for all j = 1, . . . , h and

A
(h)
j = A

(h−1)
j for all j ≤ h− 1. Also, we have an ascending chain of DG algebras

A(0) ⊆ A(1) ⊆ A(2) ⊆ · · · ⊆ A(h) ⊆ · · · .

We claim that A =

∞⋃
h=0

A(h) is well-defined and is a DG algebra resolution of R over R. For all j ≥ 0, we

have
A

(0)
j ⊆ · · · ⊆ A

(j)
j = A

(j+1)
j = · · · ,
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so Aj = A
(j)
j is the stable value in the ascending chain. To check the differential, consider the following

commutative diagram:

A
(0)
j

⊆

∂A
(0)

j

��

· · · ⊆ A
(j)
j

=

∂A
(j)

j

��

A
(j+1)
j

=

∂A
(j+1)

j

��

A
(j+2)
j

=

∂A
(j+2)

j

��

· · ·

A
(0)
j−1

⊆ · · · = A
(j)
j−1

= A
(j+1)
j−1

= A
(j+2)
j−1

= · · · .

Then ∂Aj = ∂A
(j)

j is the differential of the stable value in the ascending chain. Furthermore, Aj is free and

finitely generated because A
(j)
j is free and finitely generated. To check multiplication, let a ∈ Aj and b ∈ Ak

and ` ≥ j, k. Then a = Aj = A
(j)
j = A

(`)
j and b = Ak = A

(k)
k = A

(`)
k , so the multiplication ab makes sense

in A(`). Furthermore, this is independent of the choice of ` because A(1) ⊆ A(2) ⊆ · · · are subalgebras. The
axioms for a DG algebra are inherited from A(h), so A is a DG algebra. Finally,

Hj(A) = Hj(A
(j+1)) = Hj(A

(j)) = 0

for all j ≥ 1, so A is a DG algebra resolution. �

thm191209a Theorem III.C.2.15. Let R = k[X1, . . . , Xd] be a polynomial ring over a field, let I ≤ R be an ideal,
and set R = R/I. Then there exists a DG algebra resolution A of R over R such that Ai = 0 for all i > d.

Proof. Hilbert’s Syzygy Theorem implies R has a free resolution F over R such that Fi = 0 for all
i > d. Theorem III.C.2.14 implies there exists a DG algebra resolution A of R over R. Then Schanuel’s
Lemma implies that

BAd−1 = ZAd−1 = Ker ∂Ad−1

is projective. A result of Serre implies Ker ∂Ad−1 is free. The sequence

A = 0 // BAd−1
// Ad−1

// · · · // A0
// 0

is exact in all degrees except in degree 0 and consists of free modules. Therefore it is a free resolution of R
over R and thus we need only show A has a DG algebra structure.

We observe

BAd−1 = Im ∂Ad
∼=

Ad
Ker ∂Ad

and produce the following commutative diagram.

I =� _

��

· · ·
∂Ad+3 // Ad+2

id

��

∂Ad+2 // Ad+1

id

��

∂Ad+1 // Ker ∂Ad

⊆
��

// 0

A = · · ·
∂Ad+3

// Ad+2
∂Ad+2

// Ad+1
∂Ad+1

// Ad
∂Ad

// Ad−1
// · · ·

I ⊆ A is a subcomplex such that A ∼= A/I. As in the proof of Theorem III.C.1.6, it suffices to show that
I is a DG ideal of A, i.e., is a subcomplex that absorbs multiplication by elements of A, i.e., it suffices to
show that for all a ∈ A and for all x ∈ I we have ax ∈ I.

Assume without loss of generality that x is nonzero. Then |x| ≥ d. If |ax| > d, then we are done since
in this case ax ∈ A|ax| = I|ax|. Therefore again without loss of generality assume that |ax| = d, i.e., |x| = d

and |a| = 0. This implies x ∈ ZAd and a ∈ R, which then implies ax ∈ ZAd = Id. �

Note if ∆ = depth(R,R), then Theorem III.B.3.16 implies p := pdR(R) = d−∆. The same proof as for
Theorem III.C.2.15 yields a DG algebra resolution A′ of R such that A′i = 0 for all i > d−∆.
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III.C.3. Applications
section063021napp191209b

The Tor Algebra. Assume R is a noetherian commutative ring with identity and I, J ≤ R are ideals.
Recall that for R-modules M and N , if we let P be a projective resolution of M over R, then we have

TorRi (M,N) = Hi(P ⊗R N).

If M is finitely generated then P is of the form

P = · · · ∂3 // Rβ2
∂2 // Rβ1

∂1 // Rβ0 // 0

and we tensor to obtain

P ⊗R N = · · · ∂3 // Nβ2
∂2 // Nβ1

∂1 // Nβ0 // 0.

We use the same matrices in P and P ⊗R N for the differential.

rmk191209c Remark III.C.3.1. By Theorem II.G.1.7, we have

TorRi (M,N) = Hi(P ⊗R N) ∼= Hi(P ⊗R Q) ∼= Hi(M ⊗R Q)

where Q is a projective resolution of N . (This says that Tor is “balanced”.) The differential on P ⊗R Q is
defined as

(P ⊗R Q)n

∂P⊗Qn

��

=
⊕

i+j=n(Pi ⊗R Qj) ⊇ Pi ⊗R Qj 3 p⊗ q

(P ⊗R Q)n−1 =
⊕

k+1=n−1(Pk ⊗R Q`) ⊇ (Pi−1 ⊗R Qj)⊕ (Pi ⊗R Qj−1)

where
∂(p⊗ q) := ∂(p)⊗ q + (−1)|p|p⊗ ∂(q).

One has to check that P ⊗R Q is an R-complex. We consider augmentations P
τ

'
// M and Q

π

'
// N .

Then we have

P ⊗N P ⊗R Q
P⊗π
'oo

'
τ⊗Q // M ⊗R Q.

(We use ' to denote that the induced map on homology is an isomorphism, i.e., the map is a quasiisomor-
phism.)

thm191209d Theorem III.C.3.2. Let A be a DG algebra resolution of R/I over R.

(a) A′ := A⊗R (R/J) is a DG algebra.

(b) H(A′) = ⊕nHn(A′) = ⊕n TorRn (R/I,R/J) is a graded commutative ring, “the Tor algebra”.

note191209e Note III.C.3.3. This shows that TorRn (R/I,R/J) is not a random list of modules. They fit together
with a strong structure, and so there are restrictions on what these modules can look like.

ex191209f Example III.C.3.4. Let R = k[X1, . . . , Xd] be a polynomial ring over a field and set I = 〈X〉. The DG
algebra resolution of R/I ∼= k is the Koszul complex A = KR(X) and thus

A′ = KR(X)⊗R (R/J) ∼= KR/J(x)

where xi = Xi ∈ R/J , and the isomorphism is described in the following diagram.

eΛ ⊗ 1 ∈

$ ,,

_

��

R( di ) ⊗R (R/J)

∂
KR(X)
i ⊗(R/J)

�� �

(R/J)(
d
i )

∂
KR/J (x)
i
��

Φi
∼=

oo eΛ3
_

��∑
λ∈Λ xλeΛ\{λ} ⊗ 1 ∈

� 11R

(
d
i−1

)
⊗R (R/J) (R/J)

(
d
i−1

)
∼=

Φi−1

oo ∑
λ∈Λ(−1)φ(λ,Λ)xλeΛ\{λ}3

Then Φ is an isomorphism of DG algebras, i.e., it is an isomorphism of R-complexes that respects multipli-
cation and multiplicative identities.

Φ
(
1KR/J (x)

)
= Φ

(
1
)

= 1⊗ 1 = 1KR(X)⊗R(R/J)

Φ(eΛeΓ) = Φ(eΛ)Φ(eΓ)
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(Check this.) In particular, it follows in this case that

TorR(R/(X), R/J) ∼= H
(
KR/J(x)

)
and the graded algebra structure on the Tor algebra is the same as the algebra structure on the homology
of KR/J(x) induced by the exterior algebra structure on KR/J(x).

Proof of Theorem III.C.3.2. (a) We use an alternate description of A′ as in Example III.C.3.4. Set
R′ = R/J , then

a⊗ 1 ∈
' ++

_

��

(A′)i = Ai ⊗R R′

∂A⊗R
′

i

��

∼=
// Ai/JAi

��

a3 _

��
∂(a)⊗ 1 ∈� 22Ai−1 ⊗R R′

∼= // Ai−1/JAi−1 ∂(a)3

is an isomorphism of R-complexes. Multiplication on the right side of the diagram is defined by

Ai
JAi
× Aj

JAj
// Ai+j
JAi+j

(a, b)
� // ab.

To show this is well defined, let a = a′ ∈ Ai
JAi

and b = b′ ∈ Aj
JAj

. Then a − a′ ∈ JAi and b − b′ ∈ JAj , so

ab − a′b′ ∈ JAi+j and thus ab = a′b′. Therefore ab = ab, and it is straightforward to show that the DG
axioms for A′ ∼= A/JA are inherited from A.

(b) Since A′ is a DG algebra, then

TorR(R/I,R/J) ∼= H(A′)

is a graded commutative ring by Theorem III.C.1.6 �

Avramov’s Hammer. For this subsection, assume R = k[X1, . . . , Xd] is a polynomial ring and J ≤ R
is an ideal generated by homogeneous polynomials and R′ = R/J .

note191209g Note III.C.3.5. We have a general strategy in commutative algebra for proving results.

note191209g.a (1) Prove the result for the case when R′ is a finite dimensional vector space over k.
note191209g.b (2) If R′ is Cohen-Macaulay, then there is a maximal weakly R-regular sequence f ∈ R′ which satisfies

dimk(R′/ 〈f〉) < ∞. By step 1, the result holds over R′/ 〈f〉. Furthermore, sometimes the weakly
R-regular sequence guarantees that the result then holds over R′.

note191209g.c (3) If R′ is not Cohen-Macaulay...

Avramov’s hammer is a tool to help us deal with 3 by producing a finite dimensional DG algebra U
which behaves like R′/ 〈f〉. We prove the result over U , then use general machinery to deduce the result for
R′. The downside of Avramov’s hammer is that U is a DG algebra, so we need to track more data. The
payoff, however, is that we can drop the Cohen-Macaulay assumption.

Another strategy we use is to prove a result for certain finite dimensional rings, then deduce the result for
certain Cohen-Macaulay rings. With Avramov’s hammer, we can prove a result for certain finite dimensional
DG algebras, then deduce the result for certain non-Cohen-Macaulay rings.

prob191209h Problem III.C.3.6. Let M be a finitely generated graded R′-module (i.e., a module having a free

resolution with matrices of homogeneous polynomials). If TorR
′

i (M,M) = 0 for all i � 0, must pdR′M be
finite (i.e., must M have a bounded free resolution over R′)?

note191209i Note III.C.3.7. Note that TorR
′

i (M,N) = 0 for all i� 0 implies neither pdR′M <∞ nor pdR′ N <∞.

defn191209j Definition III.C.3.8. Let A and B be DG algebras.

(a) A chain map Φ : A → B is a morphism of DG algebras if it respects multiplication and multiplicative
identities (i.e., Φ(1A) = 1B and Φ(aa′) = Φ(a)Φ(a′) for all a, a′ ∈ A).

(b) A quasiisomorphism of DG algebras is a morphism of DG algebras that induces isomorphisms on ho-
mology in all degrees.
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ex191209k.aex191209k Example III.C.3.9. (a) Let A be a DG algebra resolution of R′ over R and let

A+ =

(
· · · ∂3 // A2

∂2 // A1
∂1 // A0

τ // R′ // 0

)
.

Then τ is a quasiisomorphism of DG algebras as in the following diagram:

A =

' τ

��

· · · ∂3 // A2
∂2 //

��

A1
∂1 //

��

A0
//

τ

��

0

��
R′ = · · · // 0 // 0 // R′ // 0.

ex191209k.b (b) If f ∈ R′, then the following diagram is a morphism of DG alrebras:

R′ =

��

· · · // 0 //

��

0 //

��

R′ //

1

��

0

��
KR′(f) = · · · // (R′)(

n
2) // (R′)n // R′ // 0.

This is not a quasiisomorphism unless f = ∅. More generally, if A is a DG R-algebra, then R′ → A0

defined by r 7→ r · 1A induces a morphism of DG algebras R′ → A.
ex191209k.c (c) Consider the following alternate description of TorR(R/I,R/J). Let A be a DG algebra resolution of

R/I over R and let B be a DG algebra resolution of R/J over R. Then A⊗R B is a DG algebra where

(a⊗ b)(a′ ⊗ b′) = (−1)|b||a
′|(aa′)⊗ (bb′).

Furthermore,

A⊗R B

A⊗π'
��

A⊗R (R/J)

is a quasiisomorphism of DG algebras, so TorR(R/I,R/J) = H(A⊗R B).

con191209l Construction III.C.3.10 (Avramov’s Hammer). Let A be a bounded DG algebra resolution of R′ =
R/J over R = k[X1, . . . , Xd]. Then Avramov’s hammer is constructed via the following chain:

R′
DG algebra

morphism by
Example III.C.3.9b

// KR′(x)
∼=
by

Example III.C.3.4

// KR(X)⊗R R′ KR(X)⊗R A
'
by

Example III.C.3.9c

oo '
by

Example III.C.3.9c

// k ⊗R A = U,

where

A = 0 // Rβd // · · · // Rβ2 // Rβ1 // R // 0,

U = k ⊗R A = 0 // kβd // · · · // kβ2 // kβ1 // k // 0,

and dimk(U) = 1 + β1 + · · ·+ βd is finite.

defn191209m Definition III.C.3.11. Let A be a DG algebra over R. A DG A-module is an R-complex Y equipped
with an R-bilinear multiplication Ai×Yj → Yi+j denoted (a, y) 7→ ay that is unital, associative, and satisfies
the Liebniz rule.

ex191209n Example III.C.3.12. (a) First, A is a DG A-module. Moreover, ΣnA is a DG A-module.
(b) Let Φ : A→ B be a morphism of DG algebras. Then:

• B is a DG A-module with ab = Φ(a)b.
• If Y is a DG B-module, then Y is a DG A-module with ay = Φ(a)y. This is a “restriction of

scalars”.
• There is a notion of tensor product over A such that if Z is a DG A-module, then B ⊗A Z is a DG
B-module with b(b′ ⊗ z) = (bb′)⊗ z.

defn191209o Definition III.C.3.13. Let A be a DG algebra and let L and Y be DG A-modules such that Li = 0 for
all i� 0.
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(a) A semi-basis for L is a subset E ⊆ L such that every element of L can be written uniquely as a linear
combination of elements of E with coefficients from A.

(b) We call L semi-free if it has a semi-basis.

(c) A semi-free resolution of Y is a quasiisomorphism L
'−→ Y such that L is semi-free and the quasiisomor-

phism respects scalar multiplication.

ex191209p Example III.C.3.14. Let K = KR′(x) and let R′ → K be a morphism of DG algebras. If M is an
R′-module with free resolution F over R′, then K ⊗RM is a DG K-module and K ⊗R F is a semi-free DG

K-module. Furthermore, the augmentation F
'−→M induces a semi-free resolution over K

K ⊗R F
' // K ⊗RM.

defn191209q Definition III.C.3.15. Let A be a DG algebra and let X and Y be DG A-modules and let L
'−→ X be

a semi-free resolution. Then
TorAi (X,Y ) = Hi(L⊗A Y ).

disc191209r Discussion III.C.3.16. Let M be a finitely generated graded R′-module, and construct a semi-free
resolution using Construction III.C.3.10:

R′ // KR′(x) ∼= KR(X)⊗R R′ KR(X)⊗R A︸ ︷︷ ︸
=B

'oo ' // k ⊗R A = U

M // K ⊗RM︸ ︷︷ ︸
DG K-module

L︸︷︷︸
semi-free
resolution

over B

'oo ' // U ⊗B L.︸ ︷︷ ︸
DG U-module

Notice here that K⊗RM is a DG B-module by restriction of scalars and that the final complex is a semi-free
DG U -module. Then we have

TorR
′

�0(M,M) = 0 ⇐⇒ TorK�0(L,L) = 0

⇐⇒ TorB�0(L,L) = 0

⇐⇒ TorU�0(U ⊗B L,U ⊗B L) = 0

?⇒ pdU (U ⊗B L) <∞
⇒ pdB(L) <∞
⇒ pdK(L) <∞
⇒ pdR′(M) <∞,

where the last implication is where we use the graded assumption on M . The implication labelled with
a question has not been proven. The point is that this argument reduces Problem III.C.3.6 to a similar
question over a finite dimensional DG algebra where the problem might be easier to solve.

Exercises

Let R be a commutative ring with identity. Let I be an ideal of R, and let F be an R-free resolution of
R/I with F0 = R and Fi = Rβi with βi ∈ N for all i.

191114a Exercise III.C.3.17. Prove that F almost has the structure of a DG R-algebra, specifically, that there
is a binary multiplication on F that satisfies all of the axioms for a DG R-algebra except possibly the
associativity axiom.
Hint: Let ei,1, . . . , ei,βi ∈ Fi be the standard basis. Argue as in the proof of Theorem III.E.4 to define the
products ei,mej,n such that the unital axiom, graded commutative axiom, and Leibniz rule are satisfied.

exr210722j Exercise III.C.3.18. Prove that if Fi = 0 for all i ≥ 4, then F has the structure of a DG R-algebra
In particular, if A ∈ Altn(R) with n odd is such that I = Pfn−1(A) satisfies depth(I,R) ≥ 3, then the
Buchsbaum-Eisenbud resolution of R/I has the structure of a DG R-algebra.
Hint: Use Exercise III.C.3.17. To verify the associative axiom, use the fact that ∂F3 is injective.
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CHAPTER IV.A

Introduction

chapter093021ai

IV.A.1. Niceness
section063021o

One can ask what makes a ring “nice”, but in fact it really depends.

ex200820a Example IV.A.1.1. Noetherian rings are nice, but they are too restrictive for some. Maybe you like
integral domains, but those also come with some restrictions. Even the subjectively basic assumption that
one has a non-zero commutative ring with identity can be too restrictive for some. There are also those that
like to work with non-associative groups; we don’t talk to those people.

In this class we will focus on niceness conditions that can be characterized by some condition on homology.
Similarly, most of the presentation (or much of it) will be colloquial. We begin with the premise that fields
are particularly “simple”, as justified in the following result.

thm200820b2 Theorem IV.A.1.2. Assume R is a non-zero commutative ring with identity. Then the following are
equivalent.

thm200820b.i (i) R is a field.
thm200820b.ii (ii) R has exactly two ideals, the zero ideal and the ring itself.
thm200820b.iii (iii) 0 � R is a maximal ideal.
thm200820b.iv (iv) R is simple as an R-module.
thm200820b.v (v) Every R-module is free, i.e., has a basis over R.
thm200820b.vi (vi) Every finitely generated R-module is isomorphic to Rn for some n.

Note that conditions (ii) and (iii) say that R only has boring ideals, and that conditions (v) and (vi) say
that R doesn’t have many modules.

For this class we set

Rn =
{

(r1 · · · rn)T | ri ∈ R
}

= R× · · · ×R︸ ︷︷ ︸
n copies

= R⊕ · · · ⊕R︸ ︷︷ ︸
n copies

.

Many of the rings we encounter in nature are not fields (e.g., coordinate rings of varieties and k[X1, . . . , Xd]
for d ≥ 1 from algebraic geometry; Stanley-Reisner rings from combinatorial algebra; rings of integers in-
side number fields from algebraic number theory), so we seek the sweet spot where the niceness conditions
are such that we can draw interesting conclusions, but are not so restrictive that we can still apply these
conclusions to other interesting classes of rings.

ex200820c Example IV.A.1.3. Integral domains are nice and of course every field is a domain. In fact one has an
integral domain if and only if one has a subring of a field. Noetherian rings are also nice and again every field
is a noetherian ring. One reason these two classes of rings are of interest is that they are not comparable,
i.e., noetherian does not imply domain, nor does domain imply noetherian.

Rings that contain a field (called “equicharacteristic” rings) and rings satisfying the descending chain
condition on ideals (called “artinian” rings) are two other interesting classes of rings. Every field is also both
equicharacteristic and artinian, and every artinian ring is also noetherian (but the converse of the latter
statement fails in general).

regular +3

��

Gorenstein +3 Cohen-Macaulay +3 noetherian

domain field

`h

+3 artinian

KS

In this class we will focus on these conditions for two classes of non-zero noetherian rings:

218
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• local rings (which possess a unique maximal ideal) and
• graded rings (which for our purposes will come from graphs, simplicial complexes, and geometry).

We begin the next chapter with the definition of local rings and the definition of graded rings will be
forthcoming.

IV.A.2. Local Rings
section063021p

We will assume for this chapter that R is a non-zero noetherian commutative ring with identity. In
particular, R has a maximal ideal. Assume k is a field.

defn200820d Definition IV.A.2.1. R is local if its maximal ideal is unique. (Note we assume R is noetherian. For
this class we will call a non-noetherian ring with a unique maximal ideal “quasilocal”.)

notn200820e Notation IV.A.2.2. If R is local with maximal ideal m, then we say (R,m) is local. Furthermore, if
k ∼= R/m, then we say (R,m, k) is local.

ex200820f Example IV.A.2.3.

(a) Every field is a local ring.
(b) Neither Z nor k[X1, . . . , Xd] is local (d ≥ 1).

Here are some properties of the local condition.

fact200820g Fact IV.A.2.4.

fact200820g.a (a) If (R,m, k) is local and I � R, then (R/I,m/I, k) is local by the Third Isomorphism Theorem. The
converse fails in general: observe that k[X] is not local, but k[X]/ 〈X〉 ∼= k is local.

fact200820g.b (b) Define Spec(R) = {prime ideals p � R}. For all p ∈ Spec(R), we have the localization

Rp = R[(R \ p)−1] =
{r
t
| r ∈ R, t ∈ R \ p

}
where

r

t
=
s

u
if and only if there exists some v ∈ R \ p such that v(ru− st) = 0. Any such localization

(Rp, pp) is local and Rp/pp ∼= Frac(R/p).
fact200820g.c (c) The ring R is local if and only if the set of non-units of R is an ideal of R.
fact200820g.d (d) (Nakayama’s Lemma) If M is a finitely generated R-module and (R,m) is local, then M = 0 if and only

if M/mM = 0.

Next, we discuss an important local construction, the formal power series ring.

con200825a Construction IV.A.2.5. Let A be a non-zero noetherian commutative ring with identity. We construct
the power series ring in one variable with coefficents in A to be

A JXK =

{ ∞∑
i=0

aiX
i | ai ∈ A

}(
=

∞∏
i=0

A

)
with

• the standard calculus definitions for addition, subtraction, and multiplication, and
• the additive and multiplicative identities defined by

0AJXK = 0A and 1AJXK = 1A.

fact200825b Fact IV.A.2.6. Let A be a non-zero noetherian commutative ring with identity.

fact200825b.a (a) The power series ring A JXK is a non-zero commutative ring with identity.
fact200825b.b (b) Furthermore, A JXK is noetherian by a version of the Hilbert Basis Theorem using the axiom of choice.
fact200825b.c (c) The quotient ring A JXK / 〈X〉 is isomorphic to A.
fact200825b.d (d) As subrings, we have A ⊆ A[X] ⊆ A JXK.
fact200825b.e (e) We have that f =

∑∞
i=0 aiX

i is a unit in A JXK if and only if a0 is a unit in A. For example, notice
that

(1−X)

( ∞∑
i=0

Xi

)
= 1,

so 1−X is a unit in A JXK with multiplicative inverse
∑∞
i=0X

i.
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In particular, consider the power series ring with coefficients in a field k and let

f =

∞∑
i=0

aiX
i ∈ k JXK .

Then f is a unit in k JXK if and only if a0 is a unit in k if and only if a0 6= 0. Also, f is a non-unit in
k JXK if and only if a0 = 0 if and only if

f = a1X + a2X
2 + · · · = X(a1 + a2X + · · · ) ∈ 〈X〉 .

Then the set of all non-units of k JXK is just the ideal generated by X, so is an ideal of k JXK. By Fact
IV.A.2.4c, we can conclude that (k JXK , 〈X〉 , k) is local.

As with polynomial rings, we next iterate the power series ring construction.

con200825c Construction IV.A.2.7. We construct the power series ring in two variables with coefficients in A by

A JX,Y K = A JXK JY K

with elements written as
∞∑
i=0

∞∑
j=0

aijX
iY j .

Inductively, we construct the power series ring in d variables with coefficients in A by

A JX1, . . . , XdK = A JX1, . . . , Xd−1K JXdK

with elements written as
∞∑

i1,...,id=0

ai1,...,idX
i1
1 · · ·X

id
d .

As a word of warning, the power series ring in infinitely many variables is not as straightforward to construct
as with the polynomial ring.

note200825d Note IV.A.2.8. Similar properties to those in Fact IV.A.2.6 hold for A JX1, . . . , XdK. In particular, the
power series ring

(k JX1, . . . , XdK , 〈X1, . . . , Xd〉 , k)

is local.

IV.A.3. Graded Rings
section063021q

Graded rings are a useful setting where it makes sense to talk about homogeneous elements and degrees
of elements. They are important in other areas of math as well. As a couple examples, they are used in
algebraic geometry to understand projective varieties, and they are used in combinatorics to understand
structures like graphs, simplicial complexes, and partially ordered sets via monomial ideals.

We will assume for this chapter that R is a non-zero commutative ring with identity and that k is a
field. We will also use the notation that N = {n ∈ Z | n ≥ 0} and that

Nd =


n1

...
nd


∣∣∣∣∣∣∣ni ∈ N

 .

defn200825e Definition IV.A.3.1. The ringR isN-graded if there exists additive abelian subgroupsR0, R1, R2, · · · ⊆
R such that R =

⊕∞
n=0Rn is an additive abelian group with the property that for all ri ∈ Ri and rj ∈ Rj ,

one has rirj ∈ Ri+j , i.e.,multiplication in R respects “the grading” Ri ×Rj → Ri+j .

The equality R =
⊕∞

n=0Rn means that every r ∈ R has a unique representation r =
∑finite
n rn such that

rn ∈ Rn for all n ∈ N. Elements of Rn are homogeneous of degree n (0 does not have a well-defined degree
but is homogeneous of all degrees). Rn is sometimes called the homogeneous/graded piece/component of R.
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ex200825f Example IV.A.3.2. Let A be a non-zero commutative ring with identity. Then we can show that
R = A[X] is N-graded. Let

R0 = A[X]0 = A ⊆ A[X]

R1 = A[X]1 = A ·X(not an ideal)

...

Rn = A[X]n = A ·Xn.

So A[X] =
⊕∞

n=0A[X]n because for every f ∈ A[X], there exists a unique representation f =
∑finite
i aiX

i.
Also, notice that

A[X]i ×A[X]j
? // A[X]i+j

aXi · bXj = abXi+j .

Therefore A[X] is N-graded.
Similarly for R = A[X1, . . . , Xd], every homogeneous polynomial of degree n is a finite sum of terms of

the form aXi1
1 · · ·X

id
d = aXi such that |i| =

∑d
j=1 ij = n. Here, the multiplication is given by Xi ·Xj = Xi+j.

Next we summarize some foundational properties of graded rings.

fact200825g Fact IV.A.3.3. Let R be N-graded.

fact200825g.a (a) We have 1 ∈ R0.
fact200825g.b (b) R0 ⊆ R is a subring and therefore R is an R0-module.
fact200825g.c (c) Rn ⊆ R is an R0-submodule.
fact200825g.d (d) We have

⊕
n≥n0

Rn ≤ R is an ideal for each fixed n0 ∈ N. In particular, we call R+ =
⊕

n≥1Rn ≤ R the

“irrelevant ideal” and we have R/R+
∼= R0 due to the first isomorphism theorem: the ring isomorphism

R // // R0∑
i ai

� // a0

has kernel R+.
fact200825g.e (e) Let x1, . . . , xd ∈ R1 and set S = R0[X1, . . . , Xd]. The following are equivalent:

(i) For all r ∈ R, there exists f ∈ S such that r = f(x1, . . . , xd).
(ii) For all n ∈ N and for all r ∈ Rn, there exists f ∈ Sn such that r = f(x1, . . . , xd).
(iii) The ring homomorphism φ : S → R given by Xi 7→ xi is surjective.

Proof. (a) Since 1 ∈ R, then 1 =
∑
i ai for ai ∈ Ri. Let bm ∈ Rm. Then

bm︸︷︷︸
homog deg m

= 1 · bm =
∑
i

aibm = a0bm︸ ︷︷ ︸
homog deg m

+ a1bm︸ ︷︷ ︸
homog deg m+1

+ · · ·︸︷︷︸
homog deg ≥m+2

.

By uniqueness of representation as a sum of homogeneous elements, we must have bm = a0bm and
a1bm = 0 = a2bm = · · · . Since this is true for all bm, then for all i ≥ 1, we have

ai ·
∑
j

bj = 0

ai ·
∑
j

aj︸ ︷︷ ︸
=1

= 0

ai = 0

Therefore 1 = a0 + a1 + · · · = a0 ∈ R0.
(b) R0 is a subring of R by the subring test because 1 ∈ R0 and R0 × R0 → R0+0 = R0, so R0 is closed

under multiplication.
(c) This is similar to the proof of b because R0 ×Ri → R0+i = Ri. �

Next, we define an important class of graded rings for geometry and combinatorics.
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defn200825h Definition IV.A.3.4. If the equivalent conditions in Fact IV.A.3.3e hold for some x1, . . . , xd and R0 is
a field, then R is standard graded.

fact200825i Fact IV.A.3.5. Let S and φ be as in Fact IV.A.3.3(e).

fact200825i.a (a) If R is standard graded, then R is noetherian (by the Hilbert Basis Theorem) and Kerφ is generated by
finitely many homogeneous polynomials.

fact200825i.b (b) If f1, . . . , fn ∈ S = k[X1, . . . , Xd] such that each fi is homogeneous, then R = S/ 〈f1, . . . , fn〉 is standard
graded such that Ri =

{
f ∈ R | f ∈ Si

}
.

ex200825j Example IV.A.3.6. Let R = k[X,Y, Z]/
〈
X2 − Y Z

〉
and notice X2 − Y Z is homogeneous of degree 2.

Then R is standard graded by Fact IV.A.3.5(b). Similarly,

R = k[X,Y, Z,W ]/
〈
X2 − Y Z,W 3 −XY Z

〉
is standard graded, with X2 − Y Z being homogeneous of degree 2 and W 3 −XY Z being homogeneous of
degree 3.

The following extension of N-grading is important for combinatorial applications.

defn200827a Definition IV.A.3.7. R is Nd-graded if there exists additive abelian subgroups Rn ⊆ R such that
R = ⊕n∈NdRn as additive abelian groups and for all ri ∈ Ri, rj ∈ Rj one has rirj ∈ Ri+j, i.e., multiplication
in R respects “the grading” Ri ×Rj → Ri+j. Note that n ∈ Nd, where Nd contains column vectors of size d
with entries in N (per the opening remarks for this chapter).

The equality R = ⊕n∈NdRn means every r ∈ R has a unique representation r =
∑finite

n rn such that
rn ∈ Rn for all n ∈ Nd. Elements of Rn are homogeneous of multidegree n. (0 does not have well-defined
multidegree, but it is homogeneous of all multidegrees.) Rn is sometimes called a homogeneous/multi-graded
piece/component of R.

ex200827b Example IV.A.3.8. Let A be a non-zero commutative ring with identity. Then the ring R = A[X] =

⊕nA[X]n is Nd-graded, where X = X1, . . . , Xd, because f =
∑finite

i aiX
i uniquely, where ai ∈ A and

i ∈ Nd. We also have R0 = A[X]0 = A ⊆ A[X] and Rn = A[X]n = AXn for n ∈ Nd (e.g., if d = 4 and
n = (1, 3, 0, 1)T , then Rn = AX1X

3
2X4). The multiplication in R also respects the grading:

A[X]i ×A[X]j // A[X]i+j

aXi · bXj = abXi+j

(e.g., if again d = 4, then we have X3
1X2X

2
4 ·X1X2X

6
3 = X4

1X
2
2X

6
3X

2
4 ).

The following properties are Nd-analogues of items from Fact IV.A.3.3.

fact200827c Fact IV.A.3.9. Let R be Nd-graded.

fact200827c.a (a) We have 1 ∈ R0.
fact200827c.b (b) R0 ⊆ R is a subring and therefore R is an R0-module.
fact200827c.c (c) Rn ⊆ R is an R0-submodule.
fact200827c.d (d) We call R+ = ⊕n6=0Rn ≤ R the “irrelevant ideal” and we have R/R+

∼= R0 for the same reasoning as
in Fact IV.A.3.3.

ex200827d Example IV.A.3.10. Let R = A[X] where A is a non-zero commutative ring with identity.

ex200827d.a (a) R+ = 〈X〉 and A[X]/ 〈X〉 ∼= A.
ex200827d.b (b) If I = 〈f1, . . . , fn〉 such that fi = Xai , then R/I is Nd-graded where f ∈ (R/I)n if f ∈ Rn and

(R/I)n = A ·Xn.

note200827c Note IV.A.3.11. In general, Nd-graded implies N-graded, i.e., if R is Nd-graded and for all n ∈ N we
set Rn = ⊕|i|=nRi where |i| = i1 + · · · + id, then R = ⊕∞n=0Rn is N-graded. We call the Nd-grading the
“fine grading” and we call the N-grading the “coarse grading”. We say a polynomial ring has the “standard
grading” when each variable has degree 1 with respect to the coarse grading.
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IV.A.4. Depth
section063021r

Assume R is a non-zero commutative ring with identity and let a � R. In this chapter, we briefly recall
the notion of depth, which is crucial for Cohen-Macaulayness.

defn200827e Definition IV.A.4.1. A sequence r = r1, . . . , rn ∈ a is R-regular if r1 is a non-zero-divisor on R and rk
is a non-zero-divisor on R/ 〈r1, . . . , rk−1〉 for all k = 2, 3, . . . , n. (Note that since a 6= R, we know 〈r〉 6= R,
so “weakly” R-regular implies R-regular in this setting.) The sequence r is a maximal R-regular sequence
in a if it is R-regular and for all s ∈ a the sequence r1, . . . , rn, s is not R-regular, i.e., the sequence r cannot
be extended to a longer R-regular sequence in a.

ex200827f Example IV.A.4.2. (a) A field k has no regular sequence other than the empty sequence, since the only
proper ideal of k is the zero ideal.

(b) In the ring Z, if a = 〈15〉, then a maximal regular sequence in a is 15. Clearly 15 is a non-zero-divisor
on Z. Since the cardinality of Z/15Z is 15, all non-zero-divisors on Z/15Z are units and therefore are
not in a.

(c) In R = A[X] where A 6= 0 and a = 〈X〉, the monomial Xn is R-regular for all n ≥ 1.
(d) In R = A[[X]] where A 6= 0 and a = 〈X〉, the monomial Xn is R-regular for all n ≥ 1.
(e) In R = A[X] where A 6= 0 and a = 〈X1, . . . , Xd〉, the list Xa1

1 , . . . , Xad
d is R-regular for any a ∈ Nd

satisfying ai ≥ 1 for all i.

prop200827g Proposition IV.A.4.3. There exists a maximal R-regular sequence in a. Moreover any R-regular se-
quence in a can be extended to a maximal R-regular sequence in a.

Proof (sketch). The essential point is that the chain of ideals

〈r1〉 ( 〈r1, r2〉 ( · · · ⊆ a 6= R

must stabilize. �

thm200827h Theorem IV.A.4.4. Every maximal R-regular sequence in a has the same length (because one can char-
acterize the length of regular sequences in terms of Ext-vanishing).

defn200827i Definition IV.A.4.5. depth(a, R) is the length of a maximal R-regular sequence in a, also denoted as
deptha(R) or depth(a), e.g., if (R,m) is local, then depth(R) := depth(m, R), e.g., if R is standard-graded
and m = R+, then depth(R) := depth(m, R).

thm200827j Theorem IV.A.4.6. If R is standard-graded, then depth(R) = depth(Rm) (also because of Ext-vanishing).

defn200827k Definition IV.A.4.7. An ideal p ∈ Spec(R) = {p ≤ R prime} is associated to R if there exists an
element r ∈ R such that

p = AnnR(r) = {s ∈ R | sr = 0} ,
i.e., it is a prime ideal in the set of all annihilator ideals of elements of R. We denote

Ass(R) = {associated prime ideals of R}.

ex200827l Example IV.A.4.8. (a) If R is an integral domain, then AnnR(0) = R and AnnR(r) = 0 for non-zero
r ∈ R. Therefore Ass(R) = {0}.

(b) If R = k[X,Y ]/ 〈XY 〉, then Ass(R) = {〈X〉 , 〈Y 〉} with 〈X〉 = AnnR(Y ) and 〈Y 〉 = AnnR(X).

fact200827m Fact IV.A.4.9. Set S = k[X1, . . . , Xd] and let I � S be generated by monomials such that

I =

m⋂
i=1

〈
X
ai1
i1
, . . . , X

aipi
ipi

〉
(irredundantly), then

Ass(S/I) =
{〈
Xi1 , . . . , Xipi

〉}
.

ex200827n Example IV.A.4.10. Let S = k[X,Y ] and define the ideal I = 〈XY 〉 = 〈X〉∩ 〈Y 〉. Then for all positive
integers a, b we have

Ass(S/I) = {〈X〉 , 〈Y 〉} = Ass
(
S/
〈
XaY b

〉)
,

where the second equality holds because
〈
XaY b

〉
= 〈Xa〉 ∩

〈
Y b
〉
.
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notn200901a Notation IV.A.4.11. We use the following notation.

ZDR(R) = {zero-divisors of R}
ZD0

R(R) = ZDR(R) ∪ {0}

ex200901b Example IV.A.4.12. Given the ring R = k[X,Y ]/
〈
XaY b

〉
where a, b ≥ 1 we have f ∈ ZD0

R(R) if and

only if X|f or Y |f , i.e.,

ZD0
R =

〈
X
〉
∪
〈
Y
〉
.

The equalities (X · Xa−1Y b = 0 and Y · XaY b−1 = 0 justify one of the containments.) Note also that
X,Y ∈ ZD0

R(R), but X + Y /∈ ZD0
R(R), demonstrating that ZD0

R(R) is not an ideal in general.

The next result shows that some of the properties in the previous example hold in general.

thm200901c Theorem IV.A.4.13.

thm200901c.a (a) ZD0
R(R) =

⋃
p∈Ass(R)

p

thm200901c.b (b) |Ass(R)| <∞
thm200901c.c (c) Ass(R) ⊇ Min(R) 6= ∅ where Min(R) is the set of minimal elements of Spec(R) with respect to contain-

ment.

ex200901d Example IV.A.4.14. Consider the ring R = k[X,Y ]/ 〈XY 〉 where ZD0
R(R) =

〈
X
〉
∪
〈
Y
〉

as in Exam-
ple IV.A.4.12. We have the finite set

Ass(R) = {
〈
X
〉
,
〈
Y
〉
} = Min(R),

where the second equality holds because both
〈
X
〉

and
〈
Y
〉

are minimal. To see this let p ∈ Spec(R) such

that p ⊆
〈
X
〉
; to prove

〈
X
〉

= p it suffices to show that X ∈ p. Since XY = 0 ∈ p, a prime ideal, we have

either X ∈ p or Y ∈ p. If Y ∈ p ⊆
〈
X
〉
, then we obtain a contradiction and thus we conclude X ∈ p. The

proof of the minimality of
〈
Y
〉

is identical.

The next result is used over and over again in this area.

lem200901e Lemma IV.A.4.15 (Prime Avoidance). Let p1, . . . , pn ∈ Spec(R). If I ≤ R is an ideal such that I 6⊆ pi
for all i, then I 6⊆

⋃n
i=1 pi.

alg200901f Algorithm IV.A.4.16. Here we present an algorithm for finding maximal R-regular sequences in the
case when (R,m) is local.

(0) If m ∈ Ass(R), then stop, because ZD0
R(R) = m implies the empty sequence is a maximal R-regular

sequence.
(1) Assume m /∈ Ass(R) = {p1, . . . , pn}.

(a) Since m 6⊆ pi for all i, by Prime Avoidance we have m 6⊆
⋃n
i=1 pi and therefore there exists an element

x1 ∈ m \ (
⋃n
i=1 pi). Since x /∈

⋃n
i=1 pi = ZD0

R(R) we know x1 ∈ m is a non-zero-divisor on R.
(b) Set R1 = R/ 〈x1〉 and m1 = m/ 〈x1〉.
(c) If m1 ∈ Ass(R1), then stop: x1 is a maximal R-regular sequence in m.

(2) Assume m1 /∈ Ass(R1).
(a) As above there exists an element x2 ∈ m1 \ ZD0

R(R1). Then x1, x2 ∈ m is an R-regular sequence.
(b) Set R2 = R/ 〈x1, x2〉 and m2 = m/ 〈x1, x2〉.
(c) If m2 ∈ Ass(R2), then stop: x1, x2 is a maximal R-regular sequence in m.

Repeat this process until md ∈ Ass(Rd). Then x1, . . . , xd is a maximal R-regular sequence in m, where
d = depth(R).

ex200901g Example IV.A.4.17. (a) Set R = k[[X,Y ]]/ 〈XY 〉 for which we have Ass(R) =
{〈
X
〉
,
〈
Y
〉}

. Note that

X−Y /∈
〈
X
〉
∪
〈
Y
〉

(i.e., X−Y is not in the union of the associated primes of R), so X−Y ∈
〈
X,Y

〉
= m

is R-regular. Observe also that m is not an associated prime. Defining the ring R1 = R/
〈
X − Y

〉
we

find

R1 =
R〈

X − Y
〉 ∼= k[[X,Y ]]

〈XY,X − Y 〉
∼=
k[[X]]

〈X2〉
.

One can check that AnnR1(X) =
〈
X
〉

= m1, implying m1 ∈ Ass(R1) and the algorithm ends. We

conclude X − Y is a maximal R-regular sequence in m and depth(R) = 1.
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(b) Consider the ring

R =
k[[a, b, α, β]]

〈ab, aα, bβ〉
.

(This is the ring determined by the edge ideal of the simple graph

α a b β.)

We claim a− α, b− β is a maximal R-regular sequence (and therefore depth(R) = 2).
(0) We decompose the (edge) ideal

〈ab, aα, bβ〉 = 〈a, b〉 ∩ 〈a, β〉 ∩ 〈α, b〉
to find

Ass(R) = {
〈
a, b
〉
,
〈
a, β

〉
,
〈
α, b
〉
},

so m =
〈
a, b, α, β

〉
/∈ Ass(R).

(1) We see that a− α /∈
〈
a, b
〉
∪
〈
α, b
〉
∪
〈
a, β

〉
, so a− α ∈ m \ ZD0

R(R). We also have the isomorphisms

R

〈a− α〉
∼=

k[[a, b, α, β]]

〈ab, aα, bβ, a− α〉
∼=

k[[a, b, β]]

〈ab, a2, bβ〉
and the decomposition

〈
ab, a2, bβ

〉
= 〈a, β〉 ∩

〈
a2, b

〉
, so

Ass(R1) =
{〈
a, β

〉
,
〈
a, b
〉}
.

Since m1 =
〈
a, b, β

〉
/∈ Ass(R1) we continue with the algorithm.

(2) Since b− β ∈ m1 \
(〈
a, β

〉
∪
〈
a, b
〉)

, we know a−α, b− β is an R-regular sequence. We compute the
associate primes of R2 to verify that the algorithm terminates. We compute

R2 =
R〈

a− α, b− β
〉 ∼= k[[a, b, α, β]]

〈ab, aα, bβ, a− α, b− β〉
∼=

k[[a, b]]

〈ab, a2, b2〉
,

and the decomposition
〈
ab, a2, b2

〉
=
〈
a, b2

〉
∩
〈
a2, b

〉
, so we have

Ass(R2) =
{〈
a, b
〉}

= {m2}.

Therefore the algorithm terminates, so we conclude a − α, b − β is a maximal R-regular sequence
and depth(R) = 2, as claimed.

(c) (Emmy ring) Set R = k[[X,Y ]]/
〈
X2, XY

〉
. We claim depth(R) = 0. We justify this two ways. First,

observe that AnnR
(
X
)

=
〈
X,Y

〉
= m, so m ∈ Ass(R). Alternatively, we have the irredundant decom-

position
〈
X2, XY

〉
= 〈X〉 ∩

〈
X2, Y

〉
, so Ass(R) =

{〈
X
〉
,
〈
X,Y

〉}
, which contains m. In either case we

conclude that the algorithm given in IV.A.4.16 terminates in step zero.

We continue with a discussion of the graded situation.

thm200903a Theorem IV.A.4.18. Assume that R is standard graded, and let p ∈ Ass(R). Then p is homogeneous
(i.e.,generated by homogeneous elements of R) and p = AnnR(r), where r is homogeneous.

ex200903b Example IV.A.4.19. Let R = k[X,Y ]/
〈
X2, XY

〉
, then Ass(R) =

{〈
X
〉
,
〈
X,Y

〉}
and〈

X
〉

= AnnR(Y ),〈
X,Y

〉
= AnnR(X).

lem200903c Lemma IV.A.4.20 (Graded Prime Avoidance). Let R be standard graded and let p1, . . . , pn ∈ Spec(R)
be not necessarily homogeneous and let I � R be a homogeneous ideal such that I 6⊆ pi for all i = 1, . . . , n.
Then there exists a homogeneous element f ∈ (I \ ∪ni=1pi) ∩ R+ (where R+ consists of all homogeneous
elements of positive degree).

cor200903d Corollary IV.A.4.21. In Algorithm IV.A.4.16, if R is standard graded, then the maximal R-regular
sequence in m = R+ can be chosen to consist of homogeneous elements of positive degree. If |R0| =∞, then
the elements can be chosen to be in R1.

ex200903e Example IV.A.4.22.

ex200903e.a (a) Let R = k[a, α, b, β]/ 〈aα, bβ, ab〉. The maximal R-regular sequence in R+ is a− α, b− β.



IV.A.5. MONOMIAL IDEALS 226

ex200903e.b (b) What happens in Corollary IV.A.4.21 if |R0| <∞? Let R = F2[X,Y ]/ 〈XY (X + Y )〉. Then X, Y , and
X +Y are all zero divisors on R, so you cannot start an R-regular sequence with homogeneous elements
of degree 1. However, we have that

Ass(R) =
{〈
X
〉
,
〈
Y
〉
,
〈
X + Y

〉}
and

X
2

+XY + Y
2 6∈

〈
X
〉
∪
〈
Y
〉
∪
〈
X + Y

〉
.

Therefore X
2

+ XY + Y
2

is a non-zero divisor on R and is homogeneous of degree 2, so a maximal
R-regular sequence can be started with an element in R2.

warn200903f Warning IV.A.4.23. We need to be careful in the multi-graded setting.

warn200903f.a (a) Associated primes in the Nd-graded setting will all be Nd-graded. For example, in the monomial setting
(like in Example IV.A.4.17), the associated primes will all be generated by monomials.

warn200903f.b (b) However, the associated primes in this case will not be annihilators of multi-graded homogeneous ele-
ments. What goes wrong? In the N-graded setting, let a ∈ Ri and b ∈ Rj satisfy i, j 6= 0. Then we have
aj + bi ∈ Rij . However, in the Nd-graded setting for d ≥ 2, let a ∈ Ri and b ∈ Rj such that i, j 6= 0.
Then one cannot define the sum aj + bi to work as in the N-graded case.

We conclude with a brief discussion of the issues behind permutations of regular sequences.

ex200903g Example IV.A.4.24. Rearrangements of R-regular sequences need not be R-regular. For example, let
R = k[X,Y, Z]. Then the sequence X,Y (1 − X), Z(1 − X) is R-regular, but the rearranged sequence
Y (1−X), Z(1−X), X is not R-regular. However, the next result shows that this can’t happen in the local
and standard graded cases.

thm200903h Theorem IV.A.4.25. Assume that (R,m) is a local or standard graded ring and let x = x1, . . . , xn ∈ m.
In the graded case, assume that the xi are all homogeneous.

thm200903h.a (a) The following are equivalent:
(i) The sequence x is R-regular.

(ii) Hi(K
R(x)) = 0 for all i ≥ 1, where KR(x) is the Koszul complex on n variables.

(iii) H1(KR(x)) = 0.
thm200903h.b (b) If x is R-regular, then xσ(1), . . . , xσ(n) is R-regular for all σ ∈ Sn.

Sketch of Proof. (a) ⇒ (b): For the Koszul complex, we have the property that

KR(x) ∼= KR(xσ(1), . . . , xσ(n)). �

IV.A.5. Monomial Ideals
section063021s

Assume for this chapter that S = k[X1, . . . , Xd] where k is a field. We flesh out some of the ideas used
in preceding sections.

fact200903i Fact IV.A.5.1. Let I be a monomial ideal in S, i.e., I is generated by monomials Xa = Xa1
1 · · ·X

ad
d

for some a ∈ Nd. Then depth(S/I) = 0 if and only if
〈
X1, . . . , Xd

〉
∈ Ass(S/I) if and only if in the

decomposition from Fact IV.A.4.9, an ideal of the form 〈Xe1
1 , . . . , Xed

d 〉 occurs for some ei ≥ 1 for all i =

1, . . . , d. For example, continuing with Emmy’s Ring from Example IV.A.4.17, let R = k[X,Y ]/
〈
X2, XY

〉
.

Then
〈
X2, XY

〉
= 〈X〉∩

〈
X2, Y

〉
and the second ideal in the intersection uses all variables, so depth(R) = 0.

The following ideals are used to describe the decompositions from Fact IV.A.5.1.

defn200903j Definition IV.A.5.2. An ideal I � S is irreducible if it cannot be decomposed non-trivially as an
intersection of ideals, i.e., for all J,K ≤ S, if I = J ∩ K, then I = J or I = K. On the other hand, I is
reducible if it is not irreducible.

ex200903k Example IV.A.5.3.

ex200903k.a (a) 〈XY 〉 = 〈X〉 ∩ 〈Y 〉, so 〈XY 〉 is reducible.
ex200903k.b (b) 〈aα, bβ, ab〉 = 〈a, b〉 ∩ 〈a, β〉 ∩ 〈α, b〉, so 〈aα, bβ, ab〉 is reducible.
ex200903k.c (c)

〈
X2, XY

〉
= 〈X〉 ∩

〈
X2, Y

〉
, so

〈
X2, XY

〉
is reducible.

ex200903k.d (d) 0 ≤ S is irreducible.

The next result allows us to identify easily the irreducible monomial ideals.
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prop200903l Proposition IV.A.5.4. Let 0 6= I � S be a monomial ideal. Then I is irreducible if and only if I is of
the form

〈
Xa1
i1
, . . . , Xan

in

〉
for some ij , aj ≥ 1.

The preceding proposition shows that most monomial ideals are not irreducible. However, as we see
next, every proper monomial ideal can be decomposed nicely as an intersection of irreducible ideals. One
may think of this as a version of prime factorization of integers for monomial ideals.

defn200903m Definition IV.A.5.5. An irreducible decomposition of an ideal I � S is a decomposition I = Q1∩ · · ·∩
Qn such that each Qi is irreducible. The intersection is irredundant if I 6=

⋂
i 6=j Qi for all j.

thm200903n Theorem IV.A.5.6 (Emmy Noether). Let I � S be an ideal. Then I has an irredundant irreducible
decomposition.

thm200903o Theorem IV.A.5.7. Let I � S be a monomial ideal. Then the irredundant irreducible decomposition of
I is unique up to reording of the factors. The factors in the irredundant decomposition are all monomial
ideals.

The next result, in conjunction with Theorem IV.A.5.12 below, makes it routine to check irredundancy
of irreducible decomposition.

thm200903p Theorem IV.A.5.8. Let I � S be a monomial ideal with irreducible decomposition I = Q1 ∩ · · · ∩ Qn.
Then the decomposition is irredundant if and only if Qi 6⊆ Qj for all i 6= j.

Even though the decomposition in the next result is not generally finite, it can still be useful. See
Theorem IV.A.5.21c for another version of this.

thm200910a Theorem IV.A.5.9. Let I ≤ S be a monomial ideal. Then

I =
⋂
I⊆J

monom. ideal
irreducible

J,

where the intersection is taken over all irreducible monomial ideals J such that I ⊆ J .

Proof. Note that if I = S, then there are no such J ’s. Since I is the empty intersection in this case,
the desired conclusion vacuously holds. Therefore, we can assume without loss of generality that I � S. Set

K =
⋂
I⊆J

monom. ideal
irreducible

J ⊇ I,

and note that I ⊆ K by definition. Then we need to show that K ⊆ I. We have the decomposition I =
Q1∩· · ·∩Qn by Theorem IV.A.5.8, where eachQi is an irreducible monomial ideal containingQ1∩· · ·∩Qn = I.
Therefore, each Qi occurs in the intersection defining K, so K is obtained by intersecting a set of ideals
including Q1, . . . , Qn. Therefore, K ⊆ Q1 ∩ · · · ∩Qn = I. �

In part to make our use of Theorem IV.A.5.8 easier, we next describe how to detect containments
between monomial ideals.

notn200910b Notation IV.A.5.10. Let JSK be the set of all monomials in S. For all ideals I ≤ S, set JIK = I ∩ JSK.

Our test for containment of monomial ideals uses finite monomial generating sequences which are guar-
anteed to exist by the following application of the noetherian property or, if one prefers, by Dickson’s
Lemma.

fact200910c Fact IV.A.5.11. If I ≤ S is a monomial ideal, then I is generated by a finite list of monomials in I,
i.e., there exist f1, . . . , fm ∈ JIK such that I = 〈f1, . . . , fm〉.

In general, it is difficult to check containments between two ideals. However, the next result shows that
it is quite easy in the monomial case.

thm200910d Theorem IV.A.5.12. Let f1, . . . , fm, g1, . . . , gn ∈ JSK. Set I = 〈f1, . . . , fm〉 and J = 〈g1, . . . , gn〉.
thm200910d.a (a) We have f1 ∈ J if and only if f1 ∈ 〈gi〉 for some i if and only if gi | f1 for some i.
thm200910d.b (b) The following are equivalent.

(i) I ⊆ J
(ii) f1, f2, . . . fm ∈ J
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(iii) for all j, there is some ij such that fj ∈ 〈gij〉
(iv) for all j, there is some ij such that gij | fj
(v) JIK ⊆ JJK

Here is an example showing how this result can be used to verify irreduncancy of decompositions.

ex200910e Example IV.A.5.13. Let I = 〈X〉 and J =
〈
X2, Y

〉
. Then I 6⊆ J because X2 - X and Y - X. Also,

I 6⊇ I because X - Y . Thus the decomposition
〈
X2, XY

〉
= 〈X〉 ∩

〈
X2, Y

〉
is irredundant by Theorem

IV.A.5.8.

defn200910f Definition IV.A.5.14. Let f1, . . . , fm ∈ JSK and let I = 〈f1, . . . , fm〉. Then the list f1, . . . , fm is
redundant if I = 〈f1, . . . , fi−1, fi+1, . . . , fm〉 for some i. The list is irredundant if it is not redundant, i.e.,
for all i = 1, . . . ,m, we have I ) 〈f1, . . . , fi−1, fi+1, . . . , fm〉.

By definition, irredundant irreducible decompositions are optimal decompositions. Next, we discuss
optimal choices for generators of monomial ideals.

thm200910g Theorem IV.A.5.15. Let f = f1, . . . , fm ∈ JSK.
thm200910g.a (a) Then f is irredundant if and only if fi - fj for all i 6= j.
thm200910g.b (b) Every monomial ideal in S has an irredundant monomial generating sequence and such generating se-

quences are unique up to reordering.

ex200910h Example IV.A.5.16. Note that I = 〈ab, aα, bβ〉 is irredundant because none of the generating mono-
mials divide any of the other ones, i.e.,ab - aα and aα - ab and ab - bβ and bβ - ab and aα - bβ and
bβ - aα.

Next, we describe how to how do we compute irreducible decompositions.

thm200910i Theorem IV.A.5.17 (“Splitting generators”). Let f1, . . . , fm ∈ JSK and I = 〈f1, . . . , fm〉. Suppose that
f1 = Xa1

i1
· · ·Xap

ip
is such that ai ∈ N and i1 < i2 < · · · < ip. Then

I =

p⋂
j=1

〈
X
aj
ij
, f2, . . . , fm

〉
.

ex200910j Example IV.A.5.18. Consider I = 〈ab, aα, bβ〉. Then by splitting generators and removing redundan-
cies we have

I = 〈a,��aα, bβ〉 ∩
〈
b, aα,��bβ

〉
= 〈a, bβ〉 ∩ 〈b, aα〉
= 〈a, b〉 ∩ 〈a, β〉 ∩��

�〈b, a〉 ∩ 〈b, α〉
= 〈a, b〉 ∩ 〈a, β〉 ∩ 〈b, α〉 .

Therefore the irredundant irreducible decomposition of I is

I = 〈a, b〉 ∩ 〈a, β〉 ∩ 〈b, α〉 .

The remainder of this chapter deals with some families of monomial ideals where one can obtain high-level
algebraic information visually.

defn200910k Definition IV.A.5.19. A monomial f is square-free if it is not divisible by any squares of variables. A
monomial ideal is square-free if it can be generated by square-free monomials.

ex200910l Example IV.A.5.20.

(a) The ideal 〈ab, aα, bβ〉 is square-free.
(b) The ideal

〈
X2, XY

〉
is not square-free.

thm200910m Theorem IV.A.5.21. Let I � S be a monomial ideal.

thm200910m.a (a) The following condition are equivalent:
(i) I is square-free.

(ii) The irredundant monomial generating sequence for I consists of square-free monomials.
(iii) I is a finite intersection of irreducible square-free monomial ideals.

thm200910m.b (b) Non-zero irreducible square-free monomial ideals are generated by lists of variables, so they are prime.
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thm200910m.c (c) If I is square-free, then I =
⋂
J , where the intersection is taken over all irreducible square-free monomial

ideals containing I.
thm200910m.d (d) If I is square-free, then the intersection in part c can be taken over all minimal elements in the set

{irreducible square-free monomial ideals containing I}. Moreover, the resulting decomposition is irre-
dundant.

ex200910n Example IV.A.5.22. Let I = 〈ab, aα, bβ〉. Let J be generated by variables in the ring S = k[a, b, α, β]
such that J ⊇ I and observe that J is prime. Then ab ∈ I ⊆ J implies that a ∈ J or b ∈ J . Similarly, we
have

aα ∈ I ⊆ J ⇒ a ∈ J or α ∈ J,
bβ ∈ I ⊆ J ⇒ b ∈ J or β ∈ J.

Therefore, J ⊇ 〈a, b〉 or J ⊇ 〈a, β〉 or J ⊇ 〈α, b〉.

Edge Ideals. For this section, let G be a finite simple graph with vertex set V = {v1, . . . , vd}. Recall
that a simple graph is one with undirected edges and no multiple edges.

ex200910o Example IV.A.5.23.

ex200910o.a (a) The 3-path or path with 3 edges, denoted P3, can be represented as follows:

α a b β.

Furthermore, the path with n edges, denoted Pn, can be presented in either of the following two ways:

v0 v1 · · · vn,

0 1 · · · n.

ex200910o.b (b) We denote the n-cycle as Cn. For example, we have

C3 = 1

3 2

C4 = 1 2

3 4

C5 = 1

5 2

4 3.

ex200910o.c (c) We denote the complete graph on n vertices or the n-clique as Kn. For example, we have

K4 = 1 2

3 4,

K5 = 1

5 2

4 3.

ex200910o.d (d) We denote the complete bipartite graph between m vertices and n vertices as Km,n. For example, we
have

K2,3 = a α

b β

γ

K3,3 = a α

b β

c γ.

The focus of this section is the following construction which takes our graph G and outputs a square-free
monomial ideal.

defn200910p Definition IV.A.5.24. The edge ideal associated to G is the ideal generated by the edges of G, i.e.

I(G) = IG = 〈XiXj | vivj is an edge in G〉 .

ex200910q Example IV.A.5.25. The edge ideal of the 3-path from Example IV.A.5.23a is

I(P3) = 〈αa, ab, bβ〉 = 〈ab, aα, bβ〉 .

The edge ideal of the complete bipartite graph K2,3 from Example IV.A.5.23d is

I(K2,3) = 〈aα, aβ, aγ, bα, bβ, bγ〉 .
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note200910r Note IV.A.5.26. The field that encompasses this construction is called combinatorial commutative al-
gebra. In this field, one uses combinatorial objects to create algebraic objects. Then one uses combinatorial
properties of the initial combinatorial object to understand algebraic properties of the algebraic object con-
structed. For instance, as we shall see next, the combinatorial properties of our graph G help us to understand
the irreducible decompositions of the edge ideal I(G).

defn200915a Definition IV.A.5.27. A vertex cover of a graph G = (V,E) is a subset W ⊆ V such that every edge
is incident to an element of W . A minimal vertex cover of G is a vertex cover W such that for all w ∈ W
the set W \ {w} is not a vertex cover of G.

ex200915b Example IV.A.5.28. (a) We consider the 3-path P3:

α a b β.

Since {a, b} covers all the edges of P3, it is a vertex cover of P3. Moreover, it is minimal since neither
{a} nor {b} is a vertex cover of P3. The other minimal vertex covers of P3 are {a, β} and {α, b}. Since
the grouping symbols are superfluous we will often write these vertex covers as ab, aβ, and αb.

(b) Now consider the complete graph on six vertices K6:

a

f b

e c

d

We observe that since every pair of vertices are adjacent, any subset W ⊆ V = {a, b, c, d, e, f} is a vertex
cover of K6 if and only if W contains at least one out of every pair of vertices in V . Hence any subset
W ⊆ V satisfying |WC | ≥ 2 is not a vertex cover of K6. It follows that the minimal vertex covers of
K6 are exactly the subsets W ⊆ V of size five. For instance, abcde is a minimal vertex cover for K6. In
general, the subsets W ⊆ {v1, . . . , vn} of size n− 1 are precisely the minimal vertex covers for Kn.

The next result shows how combinatorial information about G, namely the (minimal) vertex covers,
describes algebraic properties of the edge ideal I(G), i.e., (irredundant) irreducible decompositions.

thm200915c Theorem IV.A.5.29. If G is a finite simple graph, then the edge ideal can be decomposed as

I(G) =
⋂
W⊆V

W a vertex
cover

〈W 〉 =
⋂
W⊆V

W a minimal
vertex cover

〈W 〉 ,

where the first intersection is taken over all vertex covers of G and the second intersection is taken over all
minimal vertex covers of G. The second decomposition is also irredundant.

ex200915d Example IV.A.5.30. (a) The edge ideal of P3 can be decomposed irredundantly as

I(P3) = 〈aα, ab, bβ〉 = 〈a, b〉 ∩ 〈a, β〉 ∩ 〈α, b〉 ,
using the three minimal vertex covers ab, aβ, and αb found in Example IV.A.5.28(a).

(b) The edge ideal of K4 can be decomposed as

I(K4) = 〈ab, ac, ad, bc, bd, cd〉 = 〈a, b, c〉 ∩ 〈a, b, d〉 ∩ 〈a, c, d〉 ∩ 〈b, c, d〉
using the minimal vertex covers for Kn described in Example IV.A.5.28(b).

(c) Every square free monomial ideal generated by degree-2 monomials is an edge ideal and therefore
can be decomposed in this way, e.g., the ideal I = 〈ab, ac, ad, bd〉 is the edge ideal of the simple
graph

a b

d c.
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The minimal vertex covers of this graph are ab, ad, and bcd, and therefore by Theorem IV.A.5.29
the irredundant irreducible decomposition of I is

I = 〈a, b〉 ∩ 〈a, d〉 ∩ 〈b, c, d〉 .

We can check this decomposition of I as in Example IV.A.5.18.

I =
〈
a,��ac,��ad, bd

〉
∩ 〈b, ac, ad,��bd〉

= 〈a, b〉 ∩ 〈a, d〉 ∩
〈
b, a,��ad

〉
∩ 〈b, c, ad〉

= 〈a, b〉 ∩ 〈a, d〉 ∩��
�〈b, a〉 ∩����〈b, c, a〉 ∩ 〈b, c, d〉

= 〈a, b〉 ∩ 〈a, d〉 ∩ 〈b, c, d〉

(d) In contrast with the previous part, we can compute an irredundant decomposition of an edge ideal
in order to find all the minimal vertex covers of the corresponding graph. For the simple graph G
given by

a b

d c

the edge ideal I(G) can be decomposed as follows.

〈ab, ac, bc, bd, cd〉 = 〈a,��ac, bc, bd, cd〉 ∩
〈
b, ac,��bc,��bd, cd

〉
= 〈a, b,��bd, cd〉 ∩ 〈a, c, bd,��cd〉 ∩ 〈b, a, cd〉 ∩ 〈b, c,��cd〉
=���

�〈a, b, c〉 ∩ 〈a, b, d〉 ∩����〈a, c, b〉 ∩ 〈a, c, d〉 ∩����〈b, a, c〉 ∩����〈b, a, d〉 ∩ 〈b, c〉
= 〈a, b, d〉 ∩ 〈a, c, d〉 ∩ 〈b, c〉

Next, we are interested in the problem of finding graphs whose edge ideals are Cohen-Macaulay. The
next graphs will be key for this.

defn200915e Definition IV.A.5.31. Let G be a finite simple graph with vertex set V = {v1, . . . , vd}. The suspension
of G (also known as the K1-corona of G) is a new graph ΣG with vertex set V (ΣG) = {v1, . . . , vd, w1, . . . , wd}
and edge set E(ΣG) = E(G) ∪ {v1w1, v2w2, . . . , vdwd}.

ex200915f Example IV.A.5.32. Set G to be the path P2 = ( a b c ), which has vertex covers b, ac, ab,
bc, and abc. The suspension ΣG given by

a b c

α β γ

has minimal vertex covers that we obtain from “filling out” the vertex covers of G with elements from
V (ΣG) \ V (G):

vertex covers of G minimal vertex covers of ΣG

abc // abc

ab // abγ

ac // aβc

bc // αbc

b // αbγ.

Hence the irredundant irreducible decomposition of I(ΣG) is

I(ΣG) = 〈a, b, c〉 ∩ 〈a, b, γ〉 ∩ 〈a, β, c〉 ∩ 〈α, b, c〉 ∩ 〈α, b, γ〉 .

Since every irreducible component of I(ΣG) has the same number of generators, we say that I(ΣG) is
“unmixed”. Moreover, we shall see that the ring S/I(ΣG) is Cohen-Macaulay, where S = k[a, b, c, α, β, γ].
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thm200915g Theorem IV.A.5.33. In the notation of Definition IV.A.5.31, we have

depth(S/I(ΣG)) = d

where a maximal S/I(ΣG)-regular sequence is v1 − w1, v2 − w2, . . . , vd − wd.

Simplicial Complexes and Stanley-Reisner Rings. We have seen that the edge ideal construction
allows one to decompose square-free quadratic monomial ideals combinatorially. Next, we do this for arbitrary
square-free monomial ideals, using simplicial complexes.

defn200915i Definition IV.A.5.34. A simplicial complex with vertex set V = {v1, v2, . . . , vd} is a collection ∆ 6= ∅
of subsets of V closed under subsets, i.e., ∅ 6= ∆ ⊆ P(V ) is a “downset”. The elements of ∆ are the
faces of ∆ and the maximal faces with respect to containment are the facets of ∆. The simplicial complex
∆ = P(V ) = ∆d−1 is the (d− 1)-simplex.

Our definition of a simplicial complex is a set-theoretic one, but often it is helpful to think in terms of
a more geometric representation.

ex200915j.aex200915j Example IV.A.5.35. (a) The simplicial complex

∆ = {∅, {v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}, {v2, v4, v5}}
has the following geometric realization.

v1 v2 v3

v4v5

Alternatively, we can drop the grouping symbols from the set-theoretic representation to get

∆ = {∅, v1, v2, v3, v4, v5, v1v2, v1v3, v2v4, v2v5, v3v4, v4v5, v2v4v5} .
Moreover, since simplicial complexes are closed under taking subsets, they are completely determined
by their facets, and we can write

∆ = 〈v1v2, v2v3, v3v4, v2v4v5〉 .
ex200915j.b (b) The simplicial complex ∆ = 〈1245, 234〉 has two facets: the solid tetrahedron 〈1245〉 and the shaded

triangle 〈234〉. This has the following geometric realization.

5
4

3

2

1

fact200915k Fact IV.A.5.36. Let ∆ be a simplicial complex on V = {v1, v2, . . . , vd}.
fact200915k.a (a) Every face of ∆ is a subset of a facet of ∆ (because |V | <∞).
fact200915k.b (b) ∆ has a facet (because ∆ 6= 0).

Next, we use simplicial complexes to construct more square-free monomial ideals.

defn200915l Definition IV.A.5.37. The Stanley-Reisner ideal associated to ∆ is the ideal of S = k[X1, . . . , Xd]
generated by the non-faces of ∆:

J(∆) = J∆ =
〈
XW

∣∣ W ⊆ V and W /∈ ∆
〉

where XW =
∏
vi∈W Xi. This is a square free monomial ideal.

note200917a Note IV.A.5.38. By definition, we have that J∆ is a square-free monomial ideal.

ex200917b Example IV.A.5.39.

ex200917b.a (a) Consider the simplicial complex ∆ from Example IV.A.5.35(a) with the following geometric realization.
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1 2 3

45

We can construct J∆ by looking at all subsets of the vertex set and removing those which appear as
faces in ∆.

Subsets not in ∆: 12345, 1234, 1235, 1245, 1345, 2345,

123, 124, 125, 134, 135, 145, 234, 235,��245, 345,

��12, 13, 14, 15,��23,��24,��25,��34, 35,��45, �1, �2, �3, �4, �5.

Then removing redundancies, we obtain the irredundant generators of the corresponding Stanley-Reisner
ideal:

J∆ = 〈13, 14, 15, 35,��123,��124,��125,��134,��135,��145, 234,��235,��345,���1234,���1235,���1245,���1345,���2345,���12345〉
= 〈13, 14, 15, 35, 234〉 .

In general, the irredundant monomial generators of J∆ are the minimal non-faces of ∆.
ex200917b.b (b) Consider the simplicial complex ∆ from Example IV.A.5.35(b) with the following geometric realization.

5
4

3

2

1

Then the minimal non-faces of ∆ are 13 and 35, so we have

J∆ = 〈13, 35〉 = 〈3〉 ∩ 〈1, 5〉 .

We shall see in Theorem IV.A.5.49 below that the ideal 〈3〉 in this decomposition corresponds to the
solid tetrahedron 1245 (which misses the vertex 3), and 〈1, 5〉 corresponds to the shaded triangle 234
(which misses vertices 1 and 5).

note200917c Note IV.A.5.40. The definition of J(∆) in terms of non-faces may seem counterintuitive at first. Why
not use the faces instead? A big part of the answer is that we have a one-to-one correspondence

{non-zero square-free monomial in S/J∆} ⇐⇒ ∆.

For the example in IV.A.5.39b, the triangle 145 is in ∆ and the corresponding monomial X1X4X5 is not in
J∆. Therefore, 145 represents a non-zero element in S/J∆.

note200917d Note IV.A.5.41. It is straightforward to show that

{square-free monomial ideals in S = k[X1, . . . , Xd]} ⇐⇒ {simplicial complexes on V = {v1, . . . , vd}}.

In particular, if G is a graph on V , then there is a simplicial complex ∆ such that J∆ = IG. We next describe
how to find ∆.

defn200917e Definition IV.A.5.42. Let G be a graph on V = {v1, . . . , vd}. A subset U ⊆ V is independent if no
two vertices in U are adjacent in G. An independent subset U ⊆ V is maximal if for all v ∈ V \ U , the set
U ∪ {v} is not independent. In other words, the set U ∪ {v} is maximal with respect to containment in the
set of all independent subsets for G. Furthermore, let ∆G denote the set of all independent subsets for G.
Then ∆G is the independence complex for G.

note200917f Note IV.A.5.43. Every singleton set {vi} is independent because vi is not adjacent to vi in G, i.e.,there
are no loops in G. Furthermore, every subset of an independent subset is independent. In other words, ∆G

is closed under subsets, i.e., ∆G is a simplicial complex.

ex200917g Example IV.A.5.44.
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ex200917g.a (a) Consider the 3-path

α a b β.

Independent sets for G include {α, b}, {a, β}, and {α, β}. It is straightforward to show that the inde-
pendence complex of G is ∆G = 〈αb, aβ, αβ〉, which can be represented geometrically as follows:

b α β a.

ex200917g.b (b) Consider the simple graph

a b

d c.

The maximal independent sets are ad, b, and c. Then ∆G can be represented geometrically as follows:

a b

d c.

ex200917g.c (c) Consider the suspension of P2

a b c

α β γ.

The maximal independent sets are αβγ, aβγ, αbγ, αβc, and aβc. Then ∆G can be represented geomet-
rically as follows:

a

b cα

βγ

thm200917h Theorem IV.A.5.45. The independence complex ∆G is precisely the simplicial complex ∆ such that
IG = J∆, i.e.,IG = J∆G

.

ex200917i Example IV.A.5.46.

ex200917i.a (a) Consider the 3-path

G = α a b β.

The edge ideal for G is IG = 〈aα, ab, bβ〉. The independence complex ∆G can be represented as the
graph

∆G = b α β a.

Then the Stanley-Reisner ideal for ∆G is

J∆G
= 〈non-edges of ∆G, missing triangles, etc.〉
= 〈bβ, aα, ab〉
= IG.
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ex200917i.b (b) Consider the simple graph

G = a b

d c

and its independence complex

∆G = a b

d c.

Then IG = 〈ab, ac, bc, bd, cd〉 = J∆G
.

Next, we show how the facets of ∆ easily yield the irredundant irreducible decomposition of its Stanley-
Reisner ideal.

defn200917j Definition IV.A.5.47. For all U ⊆ V = {v1, . . . , vd}, set QU = 〈V \ U〉.

ex200917k Example IV.A.5.48. Consider the vertex set on d = 6 vertices. Then Q135 = 〈X2, X4, X6〉.

Here is the aforementioned decomposition result for Stanley-Reisner ideals.

thm200917l Theorem IV.A.5.49. If ∆ is a simplicial complex on V , then we have irreducible decompositions

J∆ =
⋂
F∈∆

QF =
⋂
F∈∆
F facet

QF ,

where the second decomposition is irredundant.

ex200917m.aex200917m Example IV.A.5.50. (a) Consider the simplicial complex

a b c

de

Then we have

J∆ = Qab ∩Qbc ∩Qcd ∩Qbde = 〈c, d, e〉 ∩ 〈a, d, e〉 ∩ 〈a, b, e〉 ∩ 〈a, c〉 .
One can verify this decomposition by splitting the generators from Example IV.A.5.39(a) as in Exam-
ple IV.A.5.18.

ex200917m.b (b) Consider the simplicial complex

5
4

3.

2

1

Then we have

J∆ = Qabde ∩Qbcd = 〈c〉 ∩ 〈a, e〉 .
One can verify this decomposition by splitting the generators from Example IV.A.5.39(b) as in Exam-
ple IV.A.5.18.

ex200917m.c (c) Consider the graph G given by

a b c

α β γ.
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The independence complex ∆G for the above graph is given in Example IV.A.5.44(c) as

a

b cα

βγ

Then we have

IG = J∆G
= Qαβγ ∩Qaβγ ∩Qαbγ ∩Qαβc ∩Qaβc
= 〈a, b, c〉 ∩ 〈α, b, c〉 ∩ 〈a, β, c〉 ∩ 〈a, b, γ〉 ∩ 〈α, b, γ〉 .

Compare this to the decomposition from Example IV.A.5.32.

ex200918a Example IV.A.5.51. We can use these techniques to decompose arbitrary square free monomial ideals.

(a) The ideal I = 〈XY,XZ,XW,Y Z, Y W,ZW 〉 can be decomposed as the edge ideal of K4 given by

X Y

W Z.

Recalling that minimal vertex covers of Kn are the subsets of size n− 1 we have

I = I(K4) = 〈X,Y, Z〉 ∩ 〈X,Y,W 〉 ∩ 〈X,Z,W 〉 ∩ 〈Y,Z,W 〉 .
I is also a Stanley-Reisner ideal where the generators of I are the non-faces of ∆, so ∆ has no edges and
four vertices. Then ∆ has the geometric realization

X Y

W Z

and using its facets we have

I = J(∆) = QX ∩QY ∩QZ ∩QW = 〈Y, Z,W 〉 ∩ 〈X,Z,W 〉 ∩ 〈X,Y,W 〉 ∩ 〈X,Y, Z〉 ,
which is the same as above.

(b) The ideal J = 〈XY Z,XYW,XZW,Y ZW 〉 is not an edge ideal, because the generators are of degree
three. However, we can still write J = J(∆) where XY Z, XYW , XWZ, and Y ZW are the minimal
non-faces of ∆. Therefore ∆ is missing all of the shaded triangles, but has all of the edges in X, Y , Z,
and W , i.e., ∆ = K4:

X Y

W Z.

So ∆ has six facets and thus the decomposition of J has six components:

J = QXY ∩QXZ ∩QXW ∩QY Z ∩QYW ∩QZW
= 〈Z,W 〉 ∩ 〈Y,W 〉 ∩ 〈Y,Z〉 ∩ 〈X,W 〉 ∩ 〈X,Z〉 ∩ 〈X,Y 〉 .

defn200918b Definition IV.A.5.52. A monomial ideal I is mixed if there exist ideals p, p′ ∈ Ass(S/I) generated by
different numbers of elements, i.e., if there exist ideals Q,Q′ in an irredundant irreducible decomposition of
I generated by different numbers of elements. I is unmixed if it is not mixed, i.e., all associated primes of
S/I are generated by the same number of elements, i.e., all irreducible ideals in an irredundant irreducible
decomposition of I are generated by the same number of elements.
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ex200918c.aex200918c Example IV.A.5.53. (a) The ideal I = 〈XY Z,XYW,XZW,Y ZW 〉 is unmixed, because, in the de-
composition

I = 〈Z,W 〉 ∩ 〈Y,W 〉 ∩ 〈Y,Z〉 ∩ 〈X,W 〉 ∩ 〈X,Z〉 ∩ 〈X,Y 〉
found in Example IV.A.5.51, we see that every irreducible component has two generators.

ex200918c.b (b) As computed above, the Stanley-Reisner ideal of the simplicial complex ∆ with geometric realization

a b c

de

has the decomposition
J(∆) = 〈c, d, e〉 ∩ 〈a, d, e〉 ∩ 〈a, b, e〉 ∩ 〈a, c〉 .

Note that we can see the fact that J(∆) is mixed both from the decomposition as well as from the facets
of differing sizes in the geometric realization.

note200918d Note IV.A.5.54. If I = J∆, then I is unmixed if and only if all facets of ∆ have the same size (dimen-
sion).

defn200918e Definition IV.A.5.55. A simplicial complex is pure if all its facets have the same dimension, where for
every face F ∈ ∆ we define dimF = |F | − 1. We also define the dimension of a simplicial complex to be the
maximum dimension among the dimensions of its facets, i.e.,

dim ∆ = max {dimF | F ∈ ∆} = max {dimF | F ∈ ∆ a facet} .

ex200918f Example IV.A.5.56. (a) The simplicial complex given in Example IV.A.5.53(b) has dimension two,
because its largest facet is a filled-in triangle:

a b c

d.e

(b) The simplicial complex given in Example IV.A.5.35(b) has dimension three, because its largest facet is
the solid tetrahedron 1245:

5
4

3.

2

1

IV.A.6. Krull Dimension
section063021t

Throughout this chapter we assume R is a non-zero, noetherian, commutative ring with identity, and
we assume k is a field. The subject of this chapter is the following measure of the size of R.

defn200918g Definition IV.A.6.1. The Krull dimension of R is

dim(R) = sup {n ≥ 0 | ∃p0 ( p1 ( · · · ( pn in Spec(R)} .

ex200918h Example IV.A.6.2. One has dim(k) = 0 since Spec(k) = {0} implies any chain begins with p0 = 0 and
there exists no suitable p1. One has dim(Z) = 1 because Spec(Z) = {0, 2Z, 3Z, 5Z, . . . } implies the chains
of prime ideals of maximum length have the form 0 ( pZ. By similar reasoning one also has dim(k[X]) = 1.
Moreover, if R is a PID (and not a field), then dim(R) = 1, since Spec(R) = {0, pR | p ∈ R is irreducible}
and every non-zero prime ideal is maximal in a PID.

Geometrically speaking, R[X] is essentially the 1-dimensional real line R1 and k[X] is essentially a
1-dimensional line over k, denoted k1. So, it makes sense for k[X] to be 1-dimensional.
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One might think that R will always have finite Krull dimension. However, we have the following:

ex200918i Example IV.A.6.3 (Nagata). There exists a non-zero, noetherian, commutative ring with identity with
infinite Krull dimension:

R = U−1k[X1, X2, X3, . . . ]

U = k[X1, X2, X3, . . . ] \

( ∞⋃
N=1

〈X2N−1 , X2N−1+1, . . . , X2N−1〉

)
= k[X1, X2, X3, . . . ] \ (〈X1〉 ∪ 〈X2, X3〉 ∪ 〈X4, X5, X6, X7〉 ∪ · · · ) .

For example, in this ring we can build a chain of length eight:

0 ( 〈X8〉 ( 〈X8, X9〉 ( · · · ( 〈X8, . . . , X15〉 .

In fact, for any n ∈ N we can make a chain of length 2n:

0 ( 〈X2n〉 ( 〈X2n , X2n+1〉 ( · · · ( 〈X2n , . . . , X2n+1−1〉 .

Hence dim(R) =∞.

On the other hand, we do have the following result which shows that local rings cannot exhibit the
behavior from Example IV.A.6.3.

thm200918j Theorem IV.A.6.4 (Krull). If R is local, then dim(R) <∞, e.g., if S is a non-zero, noetherian, com-
mutative ring with identity and p ∈ Spec(S), then dim(Sp) <∞, because (Sp, pp) is local.

Here are some other important properties of the Krull dimension.
It takes some work to show that R is noetherian, hinging on the fact that each localization Rm is

noetherian and each element f ∈ R is in only finitely many maximal ideals.

thm200918k Theorem IV.A.6.5.

thm200918k.a (a) dim(R[X]) = dim(R) + 1 = dim(R[[X]])
thm200918k.b (b) dim(k[X1, . . . , Xd]) = d = dim(k[[X1, . . . , Xd]])
thm200918k.c (c) dim(U−1R) ≤ dim(R) for each multiplicatively closed subset U ⊆ R.
thm200918k.d (d) If I � R, then dim(R/I) ≤ dim(R).
thm200918k.e (e) If I � k[X1, . . . , Xd] = S, then dim(S/I) ≤ dim(S) = d.
thm200918k.f (f) We have the following equalities.

dim(R) = sup {dim(R/p) | p ∈ Spec(R)}
= sup {dim(R/p) | p ∈ Ass(R)}
= sup {dim(R/p) | p ∈ Min(R)}

Here are some computations showing how to use the various parts of Theorem IV.A.6.4 to calculate the
Krull dimension of some rings we’ve been considering.

ex200918l Example IV.A.6.6. (a) For the ideal

I = I(P3) = 〈aα, ab, bβ〉 ( k[a, α, b, β] = S,

we have the decomposition I = 〈a, b〉 ∩ 〈a, β〉 ∩ 〈α, b〉, and we observe that

Ass(S/I) = {〈a, b〉 , 〈a, β〉 , 〈α, b〉}.

We also observe
S/I

〈a, b〉
∼=
k[a, α, b, β]

〈a, b〉
∼= k[α, β]

which implies

dim

(
S/I

〈a, b〉

)
= 4− 2 = 2.

The rings S/I
〈a,β〉 and S/I

〈α,b〉 have dimension two as well, so we have dim(S/I) = max{2} = 2.

(b) Recall again the simplicial complex ∆ with geometric realization
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a b c

d.e

and Stanley-Reisner ideal

J∆ = 〈c, d, e〉 ∩ 〈a, d, e〉 ∩ 〈a, b, e〉 ∩ 〈a, c〉 ≤ k[a, b, c, d, e] = S.

We have

dim(S/J∆) = max{5− 3, 5− 2} = 3,

which corresponds to the fact that the maximal size among facets of ∆ is 3. In general we have

dim

(
k[X1, . . . , Xd]

JΛ

)
= dim Λ + 1.

For example, if Λ is the simplicial complex

5
4

3,

2

1

then dim(S/JΛ) = 4.
(c) Given a complete graph Kd, we have dim (S/I(Kd)) = 1. One can see this at least two ways. First,

we have a bijection between the associated primes of the quotient ring S/I(Kd) and the minimal vertex
covers of Kd, which we recall have the form {v1, . . . , vi−1, vi+1, . . . , vd}. So the elements of Ass (S/I(Kd))
all look like Pi = 〈X1, . . . , Xi−1, Xi+1, . . . , Xd〉. Hence

dim

(
S/I(Kd)

Pi

)
= d− (d− 1) = 1.

On the other hand, we can consider the independence complex ∆(Kd) which has geometric realization

v1 v2 · · · vd.

It therefore has as its facets the d disjoint vertices of the complex. Hence

dim (S/I(Kd)) = dim (S/J(Kd)) = max{1, 1, . . . , 1} = 1.

(d) Considering the complete bipartite graph Km,n, we have dim (S/I(Km,n)) = max{m,n}. Indeed , the
two minimal vertex covers of Km,n have sizes m and n, respectively. Therefore the associate primes of
S/I(Km,n) are P = 〈X1, . . . , Xm〉 and Q = 〈Y1, . . . , Yn〉, and we have

dim

(
S/I(Km,n)

P

)
= (m+ n)−m = n

and

dim

(
S/I(Km,n)

Q

)
= (m+ n)− n = m,

and therefore by Theorem IV.A.6.5(f) we have

dim (S/I(Km,n)) = max{m,n}.

(e) Given the suspension ΣG of a simple graph G = (V,E) we have dim (S/I(ΣG)) = d, where d = |V |. For
instance, when G = P2 is given by

a b c



IV.A.6. KRULL DIMENSION 240

and ΣG is given by

a b c

α β γ,

the minimal vertex covers all have size 3 = d = |{a, b, c}| and therefore

dim(S/I(ΣG)) = 2d− d = 3.

As in the local case, each of the rings in Example IV.A.6.6 has finite Krull dimension. The next result
explains why.

thm200922a Theorem IV.A.6.7. If (R,m) is standard graded, then dim(R) = dim(Rm).

One of our goals is to justify the inequalities

depth(R) ≤ dim(R) ≤ edim(R).

To do this, we give an alternate description of dimR. To motivate this description, we consider the following
computations.

ex200922b Example IV.A.6.8. (a) The ring R = k[X] is standard graded with graded components Rn = kXn of

vector space dimension dimk(Rn) = 1 for all n ≥ 0. We also have dim(R/ 〈X〉n+1
) = n + 1 because a

k-basis of R/ 〈X〉n+1
is 1, X, . . . ,Xn.

(b) The ring R = k[X,Y ] is also standard graded with graded components Rn = spank
{
XiY j | i+ j = n

}
of vector space dimension dimk(Rn) = n+ 1 for all n ≥ 0. We have

dim
(
R/ 〈X,Y 〉n+1

)
= 1 + 2 + 3 + · · ·+ (n+ 1) =

(
n+ 2

2

)
=

1

2
n2 +

3

2
n+ 1.

We observe that each of the polynomials in n computed above have degree equal to the number of
variables in R, i.e., equal to the Krull dimension of R.

defn200922c Definition IV.A.6.9. Assume (R,m, k) is standard graded. Then hR(n) and HR(n) given below are
Hilbert functions.

hR(n) = dimk(Rn)

HR(n) = dimk(R/R≥n+1) = dimk(R/mn+1) =

n∑
i=0

dimk(Ri) =

n∑
i=0

hR(i)

thm200922d Theorem IV.A.6.10 (Hilbert). Assume (R,m, k) is standard graded. Then there exist polynomials pR(t)
and PR(t) in Z[t] such that

(1) hR(n) = pR(n) for all n� 0 (i.e., “the Hilbert function is eventually a polynomial”), where deg(pR(t)) =
dimR− 1 = d− 1, and

pR(t) =
e

(d− 1)!
td−1 + lower degree terms,

and e ≥ 1;
(2) HR(n) = PR(n) for all n� 0, where deg(PR(t)) = d and

PR(t) =
e

d!
td + lower degree terms.

defn200922e Definition IV.A.6.11. Both pR(t) and PR(t) are Hilbert polynomials ofR and e is the degree/multiplicity
of R.

ex200922f.aex200922f Example IV.A.6.12. (a) If R = k[X1, . . . , Xd], then

PR(t) =
1

d!
td + lower degree terms,

where d = dimR and e = 1.
ex200922f.b (b) If R = k[X,Y, Z]/

〈
Xn − Y Zn−1

〉
, then it is straightforward to show that

PR(t) =
n

2!
t2 + lower degree terms,

where dimR = 2 and e = n.
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note200922g Note IV.A.6.13. Note that dimR ≤ 3 in Example IV.A.6.12(b). In general, if

R =
k[X1, . . . , Xm]

〈homogeneous ideal〉
,

then dimR ≤ m. As with the Krull dimension of k[X1, . . . , Xd], there is also geometric content in this
inequality . Since

V (homogeneous ideal) ⊆ km = Amk

and dimk k
m = m, we have dimk V (homogeneous ideal) ≤ m, e.g., the variety V (Xn − Y Zn−1) ⊆ R3 is a

two-dimensional surface in R3.

Hilbert polynomials are nice tools for the graded setting, but P. Samuel wanted a similar tool in the
local setting.

defn200922h Definition IV.A.6.14. Assume (R,m, k) is local. We define the functions

hR(n) = dim

(
mn

mn+1

)
and

HR(n) =
n∑
i=0

hR(n)
(
= len

(
R/mn+1

))
thm200922i Theorem IV.A.6.15 (Samuel). Assume (R,m, k) is local. Then there exist polynomials pR(t) and PR(t)

in Z[t] such that

thm200922i.1 (1) hR(n) = pR(n) for all n� 0 (i.e., “the Hilbert function is eventually a polynomial”), where deg(pR(t)) =
dimR− 1 = d− 1, and

pR(t) =
e

(d− 1)!
td−1 + lower degree terms,

and e ≥ 1;
thm200922i.2 (2) HR(n) = PR(n) for all n� 0, where deg(PR(t)) = d and

PR(t) =
e

d!
td + lower degree terms.

defn200922j Definition IV.A.6.16. We say hR(n) and HR(n) are Hilbert-Samuel functions, pR(t) and PR(t) are
Hilbert- Samuel polynomials, and e is the Hilbert-Samuel multiplicity of R. The embedding dimension of R
is

edimR = dimk(m/m2) = hR(1) = minimum number of generators of m =: β0(m).

Theorem IV.A.6.15 helps us to achieve one of the goals for this section next.

thm200922k Theorem IV.A.6.17 (Samuel). If R is local, then

dimR ≤ edimR.

Proof. Theorem IV.A.6.152 gives the equality in the next display:

dimR = deg(PR(t)) ≤ edimR.

The inequality follows from some other properties of Hilbert polynomials which we omit in the interest of
time. �

defn200922l Definition IV.A.6.18. A local ringR is regular if dimR = edimR. This is another “niceness” condition.
Geometrically speaking this is a smoothness condition, as edimR counts the number of independent tangent
vector directions.

ex200922m Example IV.A.6.19. (a) Given the local ringR = k[[X1, . . . , Xd]] with the maximal ideal m = 〈X1, . . . , Xd〉,
the minimum number of generators of m is edimR = d = dimR, so R is regular.

(b) The local quotient ring R = k[[X,Y, Z]]/
〈
Xn − Y Zn−1

〉
(with n ≥ 2) with the maximal ideal m =〈

X,Y , Z
〉

has edimR = 3 and dimR = 2. Since these are not equal, we conclude R is not regular.
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note200924a Note IV.A.6.20. Consider a couple geometric ideas in R3.

(a) Consider the curve in R3 described by one parameter, so the curve has di-
mension 1. Intersect this curve with a plane in R3 to get a finite number of
points.

(b) Consider a surface in R3 described by two parameters, so the surface has
dimension 2. Intersect this surface with two planes in R3 to get a finite
number of points.

defn200924b Definition IV.A.6.21. Let m be a maximal ideal in R and let I ≤ m be an ideal. Then I is m-primary
if rad(I) = m.

ex200924c Example IV.A.6.22. (a) Let R = k[X1, . . . , Xd] and 〈X1, . . . , Xd〉 = m ≤ R be a maximal ideal. Con-
sider I = 〈Xe1

1 , . . . , Xed
d 〉 for ei ≥ 1. Then I ⊆ m because Xei

i ∈ 〈Xi〉 ⊆ m for all i. Therefore we have
that rad(I) ⊇ rad(m) = m. Also, xi ∈ rad(I) because xeii ∈ I for all i. Therefore I is m-primary.

(b) More generally, let I be a monomial ideal and I 6= S = k[X1, . . . , Xd]. Then I is m-primary if and only
if it contains a positive power of each variable in its generating sequence.

(c) Let f ∈ S be a homogeneous non-constant polynomial, so f ∈ m. Let R = S/ 〈f〉 and
〈
X1, . . . , Xd

〉
=

n ∈ R. Then
〈
X
e1
1 , . . . , X

ed
d

〉
for ei ≥ 1 is n-primary.

(d) Let R = k[X,Y, Z]/
〈
X2 − Y Z

〉
and m =

〈
X,Y , Z

〉
and I =

〈
Y , Z

〉
. Then I is m-primary because

X
2

= Y Z ∈ I.

thm200924d Theorem IV.A.6.23. Assume (R,m) is local or standard graded and set d = dim(R). In the graded
case, assume that f1, . . . , fn ∈ m are homogeneous.

(a) (Krull) If 〈f1, . . . , fn〉 is m-primary, then d ≤ n.
(b) There exists and m-primary ideal I generated by exactly d elements.
(c) dim(R) = {n ≥ 0 |R has an m-primary ideal generated by n elements}.

defn200924e Definition IV.A.6.24. Assume (R,m) is local or standard graded. A system of parameters for R is
a sequence f1, . . . , fd ∈ m such that 〈f1, . . . , fd〉 is m-primary. The number of elements in the generating
sequence corresponds to the number of planes required to cut down a curve to a finite number of points in
Note IV.A.6.20.

ex200924f Example IV.A.6.25. (a) A system of parameters for k[X1, . . . , Xd] is Xe1
1 , . . . , Xed

d such that ei ≥ 1.

(b) Two possible systems of parameters for k[X,Y, Z]/ 〈X2 − Y Z〉 are Y Z or Y
a
Z
b

such that a, b ≥ 1.

defn200924g Definition IV.A.6.26. Minh(R) = {p ∈ Min(R) | dim(R/p) = dim(R)}.

ex200924h Example IV.A.6.27. (a) Let R = k[α, β, a, b]/ 〈ab, aα, bβ〉 be the path P3. Then

Ass(R) =
{〈
a, b
〉
,
〈
a, β

〉
,
〈
b, α
〉}

= Min(R)

because there are no containment relations between distinct associated primes. Also, dim(R/p) = 2 for
all p ∈ Ass(R). Therefore, Minh(R) = Min(R) = Ass(R) in this case.

(b) Consider R = k[a, b, c, d, e]/J∆, where ∆ is the simplicial complex

a b c

de

and J∆ = 〈ac, ad, ae, ce, bcd〉. Then Ass(R) =
{〈
c, d, e

〉
,
〈
a, d, e

〉
,
〈
a, b, e

〉
, 〈a, c〉

}
. Also, we have

dim(R/ 〈a, c〉) = 3 and dim(R/p) = 2 for all p ∈ Ass(R) \ 〈a, c〉. Then Min(R) = Ass(R) but
Minh(R) = {〈a, c〉} ( Min(R).

note200924i Note IV.A.6.28. Minh(R) ⊆ Min(R) ⊆ Ass(R).

alg200924j Algorithm IV.A.6.29. How do we find a system of parameters for a given R?
Step 0: If dim(R) = 0, then stop because the system of parameters has no elements in it.
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Step 1: If dim(R) ≥ 1, then use prime avoidance to find x1 ∈ m such that x1 6∈
⋃

p∈Minh(R) p. Then set

R1 = R/ 〈x1〉.
Step 2: If dim(R1) = 0, then stop. A system of parameters if x1. Otherwise, continue by finding x2 ∈ m
such that x2 6∈

⋃
p∈Minh(R1) p.

Continue until you find x1, . . . , xd.

ex200924k Example IV.A.6.30. Consider R = k[a, b, c, d, e]/J∆, where ∆ is the simplicial complex

a b c

de

and J∆ = 〈ac, ad, ae, ce, bcd〉. From Example IV.A.6.27, we have that Minh(R) = {〈a, c〉}. By Algorithm
IV.A.6.29, we can start the system of parameters using one of b or d or e. Since dim(R) = 3, we are looking
for a sequence of length 3.
Let x1 = b. Then

R1 = R/
〈
b
〉 ∼= k[a, b, c, d, e]

〈ac, ad, ae, ce,��bcd, b〉
∼=

k[a, c, d, e]

〈ac, ad, ae, ce〉
.

Also, the simplicial complex ∆1 is

a c

e d.

Then Ass(R1) =
{〈
c, d, e

〉
, 〈a, c〉 , 〈a, e〉

}
and Minh(R1) = {〈a, c〉 , 〈a, e〉}. Only d avoids these.

Let x2 = d. Then

R2 = R1/
〈
d
〉 ∼= k[a, c, e]

〈ac, ae, ce〉
.

Also, the simplicial complex ∆2 is

a c

e.

Then Minh(R2) = {〈c, e〉 , 〈a, c〉 , 〈a, e〉}. None of a or e or c or a− c or a− e or e− c avoid these generators,
so we let x3 = a+ c+ e. Since dim(R) = 3, we stop and the system of parameters is b, d, a+ c+ e.

cor200924l Corollary IV.A.6.31. (a) Every regular sequence is part of a system of parameters.
(b) depth(R) ≤ dim(R).

Proof (Sketch). (a) Algorithm IV.A.4.16 for finding regular sequences says to avoid associated primes
at each step, so this also avoids Min and Minh primes and therefore satisfies Algorithm IV.A.6.29 for
finding systems of parameters.

(b) Let δ = depth(R). Then a maximal regular sequence x1, . . . , xδ in m is part of a system of parameters
x1, . . . , xδ, . . . , xd. Therefore depth(R) = δ ≤ d = dim(R).

�

defn200924m Definition IV.A.6.32. Assume (R,m) is local or standard graded. Then R is Cohen-Macaulay if
depth(R) = dim(R).

ex200924n Example IV.A.6.33. (a) Let R = S/I(P3). Then R is Cohen-Macaulay because depth(R) = 2 =
dim(R).

(b) Let R = S/I(ΣG). Then R is Cohen-Macaulay because depth(R) = d = dim(R).
(c) Let R = S/I(Kn). First, depth(R) ≤ dim(R) = 1. To show that R is Cohen-Macaulay, we want to show

that depth(R) ≥ 1, i.e., we need to find at least one nonzero divisor. Then the associated primes for R
are given by 〈X1, . . . , Xi−1, . . . , Xd〉 for all i. Therefore f1 = X1 + · · ·+Xd avoids all associated primes,
so f1 is a homogeneous nonzero divisor. Therefore R is Cohen-Macaulay.
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IV.A.7. Completions
section063021u

As usual, we will assume R is a non-zero, noetherian, commutative ring with identity, and we let k be a
field.

mot200929a Motivation IV.A.7.1. (a) In real analysis we build R from Q in the following way. Q has a distance
metric, so it has Cauchy sequences and we set R = {Cauchy sequences in Q}/ ∼. The result of course
is a field R which is complete and is equipped with a distance metric.

(b) In number theory, one encounters the p-adic completion of Z.

thm200929b Theorem IV.A.7.2 (Krull’s Intersection Theorem). Let I � R, If we have

(1) (R,m) is local,
(2) (R,m) is standard graded and I is homogeneous,
(3) I ⊆ Jac(R), or
(4) R is an integral domain,

then
∞⋂
n=0

In = 0.

ex200929c Example IV.A.7.3. (a) If I = pZ � Z for some prime p, then m ∈ In if and only if pn|m. Therefore
∩∞n=0I

n = 0, which one can verify using properties of UFD’s.
(b) Let I = 〈X,Y 〉 ≤ k[X,Y ]. Then f ∈ In if and only if f has no terms of degree less than n. Hence
∩∞n=0I

n = 0, which one can verify using a degree argument.
(c) Consider the ring R = k × k  k × 0 = I and observe that In = I for all n, so ∩∞n=0I

n = I 6= 0.

defn200929d Definition IV.A.7.4. Let I � R. The I-adic valuation on R is the function

νI : R // N ∪ {∞}

r
� // sup {n ≥ 0 | r ∈ In } .

note200929e Note IV.A.7.5. (a) If I satisfies the conclusion of Krull’s Intersection Theorem, then for every non-zero
r ∈ R we have

νI(r) = max {n ≥ 0 | r ∈ In } .
(b) In general we have ∩∞n=0I

n = {r ∈ R | νI(r) =∞}.
(c) If νI(r) is large, then r is in high powers of I.

ex200929f Example IV.A.7.6. (a) If I = pZ ≤ Z and r ∈ Z is non-zero, then

νI(r) = max {n ≥ 0 | p|r} .
(b) If I = 〈X,Y 〉 ≤ k[X,Y ] and r ∈ k[X,Y ] is non-zero, then

νI(r) = min{degree of monomial terms of r with non-zero coefficients}.
For instance, νI(X + 6Y ) = 1 and νI

(
X3 + 8XY 12

)
= 3.

(c) If I = k × 0 � k × k, then νI(1, 0) =∞, but νI(1, 1) = 0 because (1, 1) ∈ I0 \ I1.

defn200929g Definition IV.A.7.7. Let I � R. The I-adic norm is

| · | : R // Q≥0

r
� // 2−νI(r)

where we set 2−∞ = 0.

note200929h Note IV.A.7.8. (a) If I satisfies the conclusion of Krull’s Intersection Theorem, then for any non-zero
r ∈ R we have

|r|I = min
{

2−n | r ∈ In
}
.

(b) For every r ∈ R we have
∞⋂
n=0

In = {r ∈ R | |r|I = 0} .

(c) If |r|I is small, then r is in high powers of I.
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ex200929i Example IV.A.7.9. (a) If I = pZ � Z, then we have the following.

|12|2Z = 2−2 = 1
4 |400|2Z = 1

16 |400|5Z = 1
4

(b) We have similar computations in k[X,Y ].

defn200929j Definition IV.A.7.10. The I-adic metric on R is distI(r, s) = |r − s|I .

note200929k Note IV.A.7.11. (a) If distI(r, s) is small, then r − s is in a high power of I, i.e., r + In = s + In for
some large n.

(b) We have distI(r, s) = 0 if and only if r − s ∈ ∩∞n=0I
n.

(c) If I satisfies the conclusion of Krull’s Intersection Theorem, then distI(r, s) = 0 if and only if r = s.

prop200929l Proposition IV.A.7.12. distI is a metric on R if and only if ∩∞n=0I
n = 0.

note200929m Note IV.A.7.13. (a) In general, distI is a pseudo-metric.
(b) The triangle inequality is very strong here: all triangles are isosceles.
(c) Operations on R are continuous under this metric, so R is a topological ring in this metric.

defn200929n Definition IV.A.7.14. Let r = (r0, r1, r2, . . . ) ∈
∏∞
n=0R = RN. Then r is I-adically Cauchy if for

every ε > 0 there exists some N ∈ N such that for every m,n ≥ N we have distI(rm, rn) < ε. We also define

CauchyI(R) = {I-adic Cauchy sequences in R}.

ex200929o.aex200929o Example IV.A.7.15. (a) Set R = Z and I = 5Z ≤ R. A sequence r is 5-adically Cauchy if when one
goes far out in the sequence, the terms are 5-adically close. For instance, the sequence

r = (1, 5, 25, 75, 75 + 5, 75 + 52, 75 + 53, 75 + 54, . . . )

is 5-adically Cauchy:

distI(5, 25) = |5− 25|5 = |20|5 = 2−1

distI(25, 75) = 2−2

distI(5, 75) = 2−1

distI(75 + 5m, 75 + 5n) = |(75 + 5m)− (75 + 5n)|5 = |5m − 5n|5 = |5m(1− 5n−m)|5 = 2−m.

In the last line we assume m < n and note that r actually converges to 75 in the 5-adic metric because
(75 + 5n)− 75 = 5n.

What about a non-convergent example? The sequence s given by sn = 75 +
∑n
i=0 5i is 5-adically

Cauchy since

sm − sn =

n∑
i=m+1

5i = 5m+1

(
n−m−1∑
i=0

5i

)
.

ex200929o.b (b) If t ∈ RN is eventually constant, then t is I-adically Cauchy because if m and n are sufficiently large
then tm − tn = 0 ∈ Ip for all p ≥ 0.

ex200929o.c (c) Let I = 0, so 00 = R and 0n = 0 for all n ≥ 1. Then

ν0(r) =

{
0 if r 6= 0

∞ if r = 0,

|r|0 =

{
1
20 = 1 if r 6= 0
1

2∞ = 0 if r = 0,

dist0(r, s) = |r − s|0 =

{
1 if r 6= s

0 if r = s.

So r is 0-adically Cauchy if and only if r is eventually constant, i.e., rn = rN for all n ≥ N for some
fixed N ∈ N.

ex200929o.d (d) Let R = k[X] and I = 〈X〉 ≤ R and

r =

(
1, 1 +X, 1 +X +X2, . . . ,

n∑
i=0

Xi, . . .

)
.
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Then rm − rn =
∑m
i=n+1X

i ∈ In+1 for m > n, so distI(rm, rn) = |rm − rn|I = 1
2n+1 . Therefore the

sequence of partial sums of infinite geometric series is Cauchy, so r ∈ CauchyI(R).
More generally, f ∈ kJX1, . . . , XdK can be approximated by partial sums to get a Cauchy sequence.

prop201001x Proposition IV.A.7.16. CauchyI(R) ⊆ RN is a subring and the function

R // CauchyI(R)

r
� // (r, r, r, . . . )

is a ring monomorphism.

defn201001a Definition IV.A.7.17. Let r, s ∈ CauchyI(R). Then r ∼ s if for all ε > 0, there exists N ∈ N such
that for all n ∈ N, if n ≥ N , then distI(rn, sn) < ε.

ex201001b Example IV.A.7.18. (a) Let R = Z ≥ 〈5〉 = I and r =
{

75 +
∑n
i=0 5i

}
and s =

{
75 +

∑2n
i=0 5i

}
. Then

r ∼ s because sn − rn =
∑2n
i=n+1 5i ∈ In+1.

(b) Let r = (r, r, r, . . . ) be constant and s = (s0, s1, . . . , sN , r, r, r, . . . ) be eventually constant. Then r ∼ s.
(c) If I = 0, then r ∼ s if and only if rn = sn for all n� 0, i.e., r and s are eventually equal.

(d) Let R = k[X] ≥ 〈X〉 = I and r =
{∑n

i=0X
i
}

and s =
{∑n

i=0X
i +
∑5n
i=1 3iX7i+6n

}
. Then r ∼ s.

prop201001c Proposition IV.A.7.19. ∼ is an equivalence relation on CauchyI(R).

defn201001d Definition IV.A.7.20. The I-adic completion of R is R̂I = CauchyI(R)/ ∼. If (R,m) is local or

standard graded, then R̂ = R̂m. Frequently, we will use R̂ = R̂I in literature.

notn201001e Notation IV.A.7.21. For r ∈ CauchyI(R), we say limn→∞ rn = 0 if for all ε > 0, there exists N ∈ N
such that for all n ∈ N, if n ≥ N , then distI(rn, 0) < ε. Alternatively, for all ε > 0, there exists N ∈ N such

that for all n ∈ N, if n ≥ N , then rn ∈ IN . Let Ĩ = {r ∈ CauchyI(R) | limn→∞ rn = 0}.

prop201001f Proposition IV.A.7.22. (a) Ĩ ≤ CauchyI(R).

(b) r ∼ s if and only if r − s ∈ Ĩ.

(c) R̂I = CauchyI(R)/Ĩ. Therefore, R̂I is a commutative ring with identity.
(d) We have the following diagram.

R
const //

ε
$$

CauchyI(R)

I
��

R̂I .

Also, ker(ε) =
⋂∞
n=0 I

n, so ε is a monomorphism if and only if
⋂∞
n=0 I

n = 0.

ex201001g.aex201001g Example IV.A.7.23. (a) Let I = 0, then we can show that the map R
ε
∼=
// R̂0 is an isomorphism.

The key point here is that dist0(r, s) < 1 if and only if r = s, so Cauchy sequences are eventually
constant. Furthermore, since rn → 0 sequences are eventually zero, we have that ε is injective. Therefore
r is eventually constant, i.e., rn = r for all n ≥ N . This implies that r ∼ (r, r, r, . . . ) = const(r), so ε is
surjective.

ex201001g.b (b) Let R = k[X] ≥ 〈X〉 = I, then we can show that k̂[X]
〈X〉 ∼= kJXK by considering the following

commutative diagram:

R

��

�

k[X]� _

��
R̂

β
))

∼= kJXK
α

ee

The α map comes from Example IV.A.7.15(c). Approximate f ∈ kJXK by partial sums, so

α

( ∞∑
i=0

aiX
i

)
=

{
n∑
i=0

aiX
i

}
.
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Here, r ∈ R̂ corresponds to the power series
∑∞
i=0 aiX

i.
But what is ai? Since r is Cauchy, we have that there exists N ∈ N such that for all m,n ≥ N ,
rm − rn ∈ Ii+1 =

〈
Xi+1

〉
, i.e., the terms of rm and rn agree up to degree i. So

rm = a0 + a1X + · · ·+ aiX
i + αi+1X

i+1 + · · ·
rn = a0 + a1X + · · ·+ aiX

i + βi+1X
i+1 + · · · .

Therefore ai is the stable value of the coefficients of Xi in rn for n� 0, and we let β(r) =
∑∞
i=0 aiX

i.

ex201001g.c (c) ̂R[X1, . . . , Xd]
〈X1,...,Xd〉 ∼= RJX1, . . . , XdK. More generally,

̂k[X1, . . . , Xd]

J

〈X1,...,Xd〉
∼=
kJX1, . . . , XdK

〈J〉
.

thm201001h Theorem IV.A.7.24. Assume that I = 〈f1, . . . , fm〉.

thm201001h.a (a) R̂I ∼=
RJY1, . . . , YmK

〈Y1 − f1, . . . , Ym − fm〉
, so R̂I is noetherian.

thm201001h.b (b) If (R,m) is local or standard graded, then R̂ is local. Moreover, if I is any maximal ideal (or if rad(I)

is maximal), then R̂I is local.

thm201001h.c (c) If
⋂∞
n=0 I

n = 0, then R→ R̂I is flat, i.e., R̂I ⊕R − is exact.

note201001i Note IV.A.7.25. Theorem IV.A.7.24(a) may make you a bit uncomfortable because we can draw the
following diagram:

R[Y1,...,Ym]
〈Y1−f1,...,Ym−fm〉

∼= R

R[Y1, . . . , Ym],

τ

hh
π Yi 7→fi

OOOO

where ker(π) = 〈Yi − fi, . . . , Ym − fm〉.

Cohen Structure Theorem. Completion makes rings nicer. We can take homological features to the
completion, then take homological conclusions found in the completion back to the original problem.

thm201001j Theorem IV.A.7.26 (Cohen Structure Theorem I). If I is maximal (or rad(I) is maximal), then there

exists a regular local ring S and an ideal J ≤ S such that R̂I ∼= S/J . For example, if (R,m) is local or

standard graded, then R̂ is a homomorphic image of a regular local ring.

defn201006a Definition IV.A.7.27. A local ring (R,m) is complete if R
∼=→ R̂, i.e., if every m-adically Cauchy

sequence in R converges.

thm201006b Theorem IV.A.7.28 (Cohen Str. Theorem II). Assume (R,m, k) is local.

(a) [equicharacteristic case] Suppose m = 〈x1, . . . , xd〉.If R contains a subfield (i.e., a subring that is also a

field), then there exists an ideal J such that R̂ ∼= [[X1, . . . , Xd]]/J .
(b) [mixed characteristic case] If R does not contain a subfield, then char(k) = p > 0, m = 〈p, x1, . . . , xd〉,

and there exists an ideal J such that R̂ ∼= V [[X1, . . . , Xd]]/J and (V, pV, k) is a complete local PID (and

therefore a DVR) not a field (e.g., V = Ẑ〈p〉 and in general V is a ring of Witt vectors).

note201006c Note IV.A.7.29. What if (R,m, k) is standard graded? Then R ∼= k[X1, . . . , Xd]/J and therefore R̂ ∼=
k[[X1, . . . , Xd]]/ 〈J〉 by Example IV.A.7.23(c).

fact201016d Fact IV.A.7.30. Assume R is local.

fact201016d.a (a) depth(R̂) = depth(R)

fact201016d.b (b) dim(R̂) = dim(R)

fact201016d.c (c) edim(R̂) = edim(R) = β0(m)
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Exercises

For the following four exercises, let R =
⊕∞

n=0Rn be a noetherian N-graded commutative ring with
non-zero identity. Let I be an ideal of R. For n = 0, 1, 2, . . . set Jn = I ∩Rn.

exr210722k Exercise IV.A.7.31. Prove that for all n = 0, 1, 2, . . . the subset Jn is an R0-submodule of Rn.

exr210722l Exercise IV.A.7.32. Prove that J =
⊕∞

n=0 Jn is an ideal of R contained in I.

exr210722m Exercise IV.A.7.33. Prove that R/J ∼=
⊕∞

n=0(Rn/Jn) is a noetherianN-graded commutative ring with
identity.

exr210722n Exercise IV.A.7.34. Prove that the following conditions are equivalent.

(i) I = J , that is, I =
⊕∞

n=0 I ∩Rn.
(ii) I is generated by finitely many homogeneous elements of R.

For the following eight exercises, let k be a field.

exr210722o Exercise IV.A.7.35. Set I = 〈X1X2, X2X3〉 � k[X1, X2, X3] = S. Prove that depth(S/I,R) = 1.

exr210722p Exercise IV.A.7.36. Set I ′ = 〈X1X2, X2X3, X1Y1, X2Y2, X3Y3〉 � k[X1, X2, X3, Y1, Y2, Y3] = S′. Prove
that depth(S′/I ′, R) = 3.

fact210722q Fact IV.A.7.37. Let I � S be a square-free monomial ideal with irredundant irreducible decomposition
I =

⋂n
j=1Qj. Then

I + 〈X2
1 , . . . , X

2
i 〉 =

n⋂
j=1

(Qj + 〈X2
1 , . . . , X

2
i 〉)

is an irredundant irreducible decomposition.

ex210722r Example IV.A.7.38. In S = k[X1, X2, X3] we have 〈X1X2, X2X3〉 = 〈X1, X3〉 ∩ 〈X2〉 and

〈X1X2, X2X3, X
2
1 〉 = 〈X1, X3, X

2
1 〉 ∩ 〈X2, X

2
1 〉 = 〈X1, X3〉 ∩ 〈X2

1 , X2〉.
exr210722s Exercise IV.A.7.39. Set S = k[X1, . . . , Xd] and S′ = S[Y1, . . . , Yd] = k[X1, . . . , Xd, Y1, . . . , Yd]. Let

f1, . . . , fn be square-free monomials in S, and set J = 〈X1Y1, . . . , XdYd, f1, . . . , fn〉 � S′.

(a) Prove that the sequence X1−Y1, . . . , Xd−Yd is (S′/J)-regular. (Hint: Split the first generator X1Y1 to
start decomposing J , and use this to show that X1 − Y1 is not in any associated prime of S′/J .)

(b) Prove that depth(S′/J,R) = d.

exr210722t Exercise IV.A.7.40. Consider the polynomial ring S = k[X1, . . . , Xd].

(a) Prove that the Hilbert function hS is given by the formula hS(n) =
(
n+d−1
d−1

)
.

(b) Use hS to prove that dim(S) = d and the multiplicity of S is e(S) = 1.

exr210722u Exercise IV.A.7.41. Consider the polynomial ring S = k[X1, . . . , Xd]. Fix a non-zero homogeneous
polynomial f ∈ S of degree m, and set R = S/〈f〉.
(a) Prove that the Hilbert function hR is given by the formula

hR(n) =

{
hS(n) for n < m

hS(n)− hS(n−m) for n ≥ m.

(b) Use hR to prove that dim(R) = d− 1 and the multiplicity of R is e(R) = m.

exr210722v Exercise IV.A.7.42. Prove that the power series ring k[[X1, . . . , Xd]] is Cohen-Macaulay.

exer4 Exercise IV.A.7.43. Consider the polynomial ring S = k[a, b, c, d, e]. Set I = 〈ab, bc, cd, de, ae〉 and
R = S/I.

item1 (a) Split the generators of I to compute an irredundant irreducible decomposition of I.
(b) Use the decomposition from part (a) to compute dim(R) and determine whether I is unmixed or not.

item3 (c) Use a simplicial complex to re-derive the decomposition from part (a), to compute dim(R), and to
determine whether I is unmixed or not.

(d) Use a graph to re-derive the decomposition from part (a).

Justify all your answers.

exr210722w Exercise IV.A.7.44. Repeat Exercise IV.A.7.43, parts (a)–(c) for the ring S = k[a, b, c, d, e] and the
ideal J = 〈de, abcd, abce〉.



CHAPTER IV.B

Regular Rings

chapter093021aj
IV.B.1. Foundational Properties

section063021v
Assume (R,m, k) is local.

rec201006e Recall IV.B.1.1. We have the compound inequality

depth(R) ≤ dim(R) ≤ edim(R).

R is a regular local ring if dim(R) = edim(R), i.e., it has large Krull dimension or small embedding dimension.

ex201006f.aex201006f Example IV.B.1.2. (a) By Theorem IV.A.6.5, both k[[X1, . . . , Xd]] and k[X1, . . . , Xd]〈X1,...,Xd〉 are reg-
ular local rings of dimension d. Thus we have

β0(m) ≤ d = dim(k[X1, . . . , Xd]) ≤ β0(m)

and therefore have equality at every step. We also have

d ≤ dim
(
k[X1, . . . , Xd]〈X1,...,Xd〉

)
≤ dim(k[X1, . . . , Xd]) = d,

because there exists a chain of primes of length d:

0 ( 〈X1〉 ( 〈X1, X2〉 ( · · · ( 〈X1, . . . , Xd〉 .
Hence

β0(m) ≤ d = dim
(
k[X1, . . . , Xd]〈X1,...,Xd〉

)
≤ β0(m)

and we have equality at every step.
ex201006f.b (b) Let p ∈ Z>0 be prime and let (V, pV, k) be a complete local PID that is not a field, i.e., a complete local

p-ring. Then R = V [[X1, . . . , Xd]] is a regular local ring of dimension d+1. One can prove this as above by
Theorem IV.A.6.5 using Example IV.A.6.2 and the fact that dimV = 1. So dim(V [[X1, . . . , Xd]]) = d+1,
m = 〈p,X1, . . . , Xd〉, and one proceeds as in (a). The argument is similar for V [X1, . . . , Xd]〈p,X1,...,Xd〉.

ex201006f.c (c) R = Ẑ〈p〉[[X]]/
〈
p−X2

〉
is a regular local ring of dimension 1 with m =

〈
p,X

〉
=
〈
X
〉
. Therefore

β0(m) ≤ 1 and we know dim(R) ≤ β0(m), so we want to show 1 ≤ dim(R). For the sake of contradiction,

suppose dim(R) < 1, i.e., dim(R) = 0. Since dim
(
Ẑ〈p〉[[X]]

)
= 2, we know a system of parameters for

Ẑ〈p〉[[X]] has length 2. However, if dim(R) = 0, then m = 0. Therefore p−X2 is a system of parameters

for Ẑ〈p〉[[X]], which is too short, because the dimension is 2. The fact p = X2 ∈ m2 says R is a ramified
regular local ring.

Our goal is to show that regular local rings must be Cohen-Macaulay.

prop201006g Proposition IV.B.1.3. Let f = f1, . . . , fn ∈ m. Then dim(R/ 〈f〉) ≥ dimR− n.

Proof. Argue as in Example IV.B.1.2(c). If dim(R/ 〈f〉) < dimR − n, then generate an m-primary
ideal by fewer then d elements, which is a contradiction since d gives the smallest number of generators of
an m-primary ideal. �

thm201006h Theorem IV.B.1.4. If R is a regular local ring and f ∈ m \ m2 (i.e., f is a minimal generator of m),
then R = R/ 〈f〉 is a regular local ring and dimR = d− 1, where d = dim(R).

Proof. Set m = m/ 〈f〉, the maximal ideal of R. We have edim(R) = β0(m) ≤ β0(m) − 1 since
f ∈ m \ m2. Then β0(m) − 1 = dimR − 1 because R is a regular local ring, so we can use Proposition
IV.B.1.3 to get that dimR− 1 ≤ dim(R) ≤ edim(R). Then

edim(R) = β0(m) ≤ β0(m)− 1 = dimR− 1 ≤ dim(R) ≤ edim(R),

so we have equality at every step. �

249
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note201006i Note IV.B.1.5. The conclusion of Theorem IV.B.1.4 fails if f ∈ m2, because β0(m) = β0(m) and

dim(R)
∗
= dimR− 1 = edimR− 1 = edimR− 1

in this case. Equality * will follow once we prove that regular local rings are integral domains.

defn201006j Definition IV.B.1.6. Assume R is a regular local ring of dimension d. Any sequence x = x1, . . . , xd
that generates m is a regular system of parameters.

ex201006k Example IV.B.1.7. (a) The sequence X = X1, . . . , Xd is a regular system of parameters for the ring
k[[X1, . . . , Xd]] as well as the ring k[X1, . . . , Xd]〈X〉.

(b) The sequence p,X1, . . . , Xd is a regular system of parameters of the ring R = V [[X1, . . . , Xd]] where V is
a complete p-ring.

(c) The sequence X is a regular system of parameters of R = Ẑ〈p〉[[X]]/
〈
p−X2

〉
.

prop201008a Proposition IV.B.1.8. Every regular system of parameters is a system of parameters.

Proof. Assume that R is a regular local ring and that x = x1, . . . , xd ∈ m is a regular system of
parameters, i.e., d = dim(R) and m = 〈x〉. First, x has the correct number of elements for a system of
parameters (d = dim(R)). Second, 〈x〉 = m = rad(m), so x generates an m-primary ideal. Therefore, x is a
system of parameters. �

thm201008b Theorem IV.B.1.9. Every regular local ring is an integral domain and every regular system of parame-
ters is R-regular.

Proof. Set d = dim(R) and assume that R is a regular local ring with regular system of parameters
x = x1, . . . , xd ∈ m. We first claim that R is an integral domain.

Proof. We induct on d.

d = 0: Here x = ∅, so m = 0. Therefore R is a field, and hence an integral domain (this idea also shows that
every field is a regular local ring).

d ≥ 1: Let Min(R) = {p, . . . , pn}. Note that m 6⊆ pi for any i because d ≥ 1, so m is not minimal. Also
m 6⊆ m2 because of Nakiyama’s Lemma (by contradiction, if m ⊆ m2, then m = m2, so m = 0 by Nakiyama’s
Lemma, which implies d = 0). By prime avoidance, we then have that m ( m2 ∪ p1 ∪ · · · ∪ pn, so there exists
f ∈ m \

(
m2 ∪ p1 ∪ · · · ∪ pn

)
. Since f ∈ m \m2, then R = R/ 〈f〉 is a regular local ring and dim(R) = d− 1

by Theorem IV.B.1.4. The inductive hypothesis states that R is an integral domain. Therefore f is prime in
R, so there exists some minimal prime ideal which is a subset of 〈f〉. Without loss of generality, let p1 ⊆ 〈f〉,
so f 6∈ p1. We claim that p1 = 0.

Proof. By Nakayama’s Lemma, it suffices to show that p1 = fp1. p1 ⊇ fp1 is clear. Let y ∈ p1 ⊆ 〈f〉,
so y = fz for some z ∈ R. But f 6∈ p1, so z ∈ p1, so y = fz inf p1. X

Now we can conclude that 0 is prime in R. Therefore R is an integral domain. X

Second, we claim that x is R-regular.

Proof. We again induct on d.

d = 0: x = ∅ is vacuously regular.

d ≥ 1: x1 6= 0 (because otherwise we would have that m = 〈x1, . . . , xd〉 = 〈x2, . . . , xd〉 is generated by
d − 1 elements, which is too few). Since R is an integral domain and x1 ∈ m, then x1 is a non-unit.
Therefore x1 is a non zero-divisor on R. By Theorem IV.B.1.4, R = R/ 〈x1〉 is an regular local ring and
dim(R) = d − 1 with regular system of parameters x2, . . . , xd. By the inductive hypothesis, x2, . . . , xd is
R-regular, so x = x1, . . . , xd is R-regular. X

�

cor201008c Corollary IV.B.1.10. Every regular local ring is Cohen-Macaulay.
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Proof. Let d = dim(R). We have d ≤ depth(R) by Theorem IV.B.1.9, so

d = dim(R) ≥ depth(R) ≥ d.
�

prop201008d Proposition IV.B.1.11. Let R be a local integral domain, e.g., a regular local ring. Let 0 6= f ∈ m and
d = dim(R) and R = R/ 〈f〉. Then dim(R) = d− 1.

Proof. Let pn ) · · · ) p0 be a chain of primes in R of maximal length, where n = dim(R) and
pi = pi/ 〈f〉 and pn ) · · · ) p0 ⊇ 〈f〉 ) 0. Then

d = dim(R) ≥ n + 1 = dim(R) + 1,

so d− 1 ≥ dim(R).
Now let f1, . . . , fn ∈ m be a system of parameters for R. Then m = rad(

〈
f1, . . . , fn

〉
) implies that m =

rad(〈f1, . . . , fn, f〉) and d = dim(R) ≤ n+ 1. Therefore d− 1 ≤ n = dim(R). �

thm201008e Theorem IV.B.1.12. The following are equivalent.

thm201008e.i (i) R is a regular local ring.

thm201008e.ii (ii) R̂ is a regular local ring.
thm201008e.iii (iii) RJXK is a regular local ring.
thm201008e.iv (iv) RJX1, . . . , XnK is a regular local ring for some n ≥ 1.
thm201008e.v (v) RJX1, . . . , XnK is a regular local ring for all n ≥ 1.
thm201008e.vi (vi) R[X]〈m,X〉 is a regular local ring.
thm201008e.vii (vii) R[X1, . . . , Xn]〈m,X1,...,Xn〉 is a regular local ring for some n ≥ 1.

thm201008e.viii (viii) R[X1, . . . , Xn]〈m,X1,...,Xn〉 is a regular local ring for all n ≥ 1.

Proof. First we show that (i) if and only if (ii). By Fact IV.A.7.30, dim(R̂) = dim(R) and edim(R̂) =

edim(R). Therefore whenever dim(R̂) = edim(R̂), we have dim(R) = edim(R) and vice versa.
Next, we prove that (i) implies (vi). Assume that R is a regular local ring. Set R6 = R[X]〈m,X〉 and

m6 = 〈m, X〉. Then

edim(R6) = β0(m6)

≤ β0((m) + 1

= edim(R) + 1

= dim(R) + 1

?
≤ dim(R6)

≤ edim(R6).

If we can show the inequality in the penultimate line, then we will have equality at every step. It suffices to
show that there exists a chain P0 ( P1 ( · · · ( Pd+1 in Spec(R6). Let p0 ( · · · ( pd be a chain in Spec(R)
and consider the chain

P0

=

P1

=

Pd

=

Pd+1

=

〈p0〉 (

⊆

〈p1〉 (

⊆

· · · ( 〈pd〉 (

⊆

〈pd, X〉

⊆

R6 R6 R6 R6.

Then Pi is prime for all i = 0, . . . , d because

R6/ 〈pi〉 =
R[X]〈m,X〉

〈pi〉
∼=
(
R

pi

[
X
])
〈m,X〉

and

R6/ 〈pd, X〉 =
R[X]〈m,X〉

〈pd, X〉
∼=


(
R
pd

[
X
])〈

X
〉


〈m,X〉

,

which is isomorphic to a localization of the integral domain R/pd.
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Proving (vi) implies (vii) and (vii) implies (viii) is routine. To show (viii) implies (i), assume n ≥ 1
such that R′ = R[X1, . . . , Xn]〈m,X1,...,Xn〉 is a regular local ring. Then since dimR′ = dimR + n and
edimR′ = edimR+ n we have

R is a regular local ring ⇐⇒ dimR = edimR

⇐⇒ dimR+ n = edimR+ n

⇐⇒ dimR′ = edimR′

⇐⇒ R′ is a regular local ring.

Finally, one proves that
(i) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (i)

as above. �

ex201013a Example IV.B.1.13. If R is a local PID, then R is a regular local ring.

(1) If R is a field, then R is a regular local ring of dimension 0.
(2) If R is not a field, then β0(m) = 1 since it is a PID of dimension one. (See Example IV.A.6.2)

que201013b Question IV.B.1.14. In general dimRp is easy to control, but edimRp is more difficult to control,
because β0(pp) can be much smaller than β0(p). Hence one might ask: if R is a regular local ring and
p ∈ Spec(R), must Rp be a regular local ring as well?

IV.B.2. Homological Properties
section063021w

Assume (R,m, k) is a regular local ring.

defn201013c Definition IV.B.2.1. An R-module M has finite projective dimension if there exists an exact sequence

0 // Pn // · · · // P0
// M // 0

such that each Pi is projective over R. We then define the projective dimension of M to be the infimum of
the lengths of such chains, i.e.,

pdR(M) = inf {n ≥ 0 | ∃ an exact sequence 0→ Pn → · · · → P0 →M → 0} .

ex201013d Example IV.B.2.2. (a) Assume R is a local PID. Then every submodule of a free R-module is free.

Therefore for every R-module M there is a surjection F0
τ→M such that F0 is free. Hence Ker(τ) is free

and therefore projective, so we have a short exact sequence

0 // Ker(τ) // F0
τ // M // 0,

with projective R-modules Ker(τ) and F0. Thus pdR(M) ≤ 1.
(b) If x = x1, . . . , xn ∈ m is R-regular, then the Koszul complex KR(x) is a free resolution of R/ 〈x〉, so

pdR(R/ 〈x〉) ≤ n. For instance, if R = k[[X1, . . . , Xn]] or R = k[X1, . . . , Xn]〈X〉, where X = X1, . . . , Xn,
then X is R-regular. Therefore

pdR(k) = pdR(R/ 〈X〉) ≤ n
since k ∼= R/ 〈X〉.

(c) Over the ring R = k[[X]]/
〈
X2
〉
, the field k has infinite projective dimension. Observe that k has the

projective resolution

· · · X· // R
X· // R

X· // R
X· // k // 0

and one can additionally show that there are no shorter resolutions for k when working over R. One can
argue similarly for R = k[[X,Y ]]/ 〈XY 〉.

thmABF Theorem IV.B.2.3 (Auslander-Buchsbaum formula). If M is a finitely generated R-module of finite
projective dimension, then pdR(M) = depth(R) − depth(M) (where depth(M) is the length of maximal
M -regular sequences in m).

ABS Theorem IV.B.2.4 (Auslander-Buchsbaum-Serre). The following are equivalent.

(i) R is a regular local ring.
(ii) Every R-module has finite projective dimension over R.
(iii) Every finitely generated R-module has finite projective dimension over R.
(iv) The residue field of R has finite projective dimension over R.
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cor201013e Corollary IV.B.2.5. If R is a regular local ring and p ∈ Spec(R), then Rp is a regular local ring.

Proof. We know Rp is local with maximal ideal pp and residue field Rp/pp ∼= (R/p)p. By Auslander-
Buchsbaum-Serre, to show that Rp is a regular local ring, it suffices to show that pdRp

(Rp/pp) is finite.

Working over R, Auslander-Buchsbaum-Serre implies that pdR(R/p) <∞. So there exists an exact sequence

0 // Qn // · · · // Q0
// R/p // 0

such that each Qi is projective over R. Since localization is exact the sequence

0 // (Qn)p // · · · // (Q0)p // (R/p)p //

∼= 0

Rp/pp

is exact and furthermore one can show that each (Qi)p is projective over Rp ((Qi)p =
(
Rβi

)
p

= (Rp)βi).

Therefore pdRp
(Rp/pp) ≤ n <∞, as desired. �

cor201013f Corollary IV.B.2.6. If p ∈ Spec(k[X1, . . . , Xd]), then k[X1, . . . , Xd]p is a regular local ring.

thmAB Theorem IV.B.2.7 (Auslander-Buchsbaum). Regular local rings are unique factorization domains. (For
instance, Z〈p〉[X]/

〈
X2 − p

〉
is a UFD.)

Exercises

Let k be a field.

exr2107222x Exercise IV.B.2.8. Let (R,m) be a local ring and x = x1, . . . , xn ∈ m an R-regular sequence. Prove
that if R/〈x〉 is a regular local ring, then R is a regular local ring and x is part of a regular system of
parameters for R.



CHAPTER IV.C

Complete Intersection Rings

chapter093021ak
As we noted in IV.B.1.5, if Q is a regular local ring and x is a Q-regular sequence, then Q/ 〈x〉 may not

be a regular local ring.

IV.C.1. Foundational Properties
section063021x

defn201013g Definition IV.C.1.1.

(a) A local ring R is a natural complete intersection if there exists a regular local ring Q and a Q-regular
sequence x such that R ∼= Q/ 〈x〉.

(b) A local ring R is a formal complete intersection if R̂ is a natural complete intersection.
(c) A standard graded ring R is a geometric complete intersection if there exists a polynomial ring S =

k[X1, . . . , Xd] and a homogeneous S-regular sequence f such that R ∼= S/ 〈f〉.

ex201013h Example IV.C.1.2. (a) The ring k[X1, . . . , Xd]/ 〈Xa1
1 , . . . , Xan

n 〉, where ai ≥ 1, is a geometric complete
intersection.

(b) The ring k[[X1, . . . , Xd]]/ 〈Xa1
1 , . . . , Xan

n 〉, where ai ≥ 1, is a natural complete intersection.
(c) Regular local rings are natural complete intersections, which in-turn are formal complete intersections,

i.e.,

regular local ring =⇒ natural complete intersection =⇒ formal complete intersection.

The converses of the above fail, in general. One can see that the converse of the first implication fails
by our motivating example. The converse of the second implication fails is a relatively new result by
Heitmann and Jorgenson.

(d) If R is a standard graded geometric complete intersection, then Rm is a natural complete intersection
(because localizations of polynomial rings are regular local rings).

prop201013i Proposition IV.C.1.3. If (R,m) is a natural complete intersection and p ∈ Spec(R), then Rp is a
natural complete intersection.

Proof. Since R is a natural complete intersection, there exists a regular local ring Q and a Q-regular
sequence f such that R ∼= Q/ 〈f〉. Then for some P ∈ Spec(Q) satisfying f ∈ P we have p = P/ 〈f〉 ∈ Spec(R)
and Rp

∼= QP / 〈f〉. Moreover, Rp is therefore a natural complete intersection, since Q a regular local ring
implies QP is a regular local ring, and f a Q-regular sequence implies f is a QP -regular sequence (note
f ∈ P ). �

prop201015a Proposition IV.C.1.4. If (R,m) is standard graded geometric complete intersection and p ∈ Spec(R),
then Rp is a natural complete intersection. (Note that Rp is not generally a geometric complete intersection
because Rp is not usually standard graded.

Proof. Since R is a geometric complete intersection, there exists a polynomial ring S and a homoge-
neous S-regular sequence f such that R ∼= S/ 〈f〉. Prime correspondence tells us that p = P/ 〈f〉 for some
P ∈ Spec(S) such that f ∈ P . Therefore Rp

∼= SP / 〈f〉. We see that f is SP -regular because f is S-regular
and f ∈ P , and furthermore that SP is a regular local ring by Corollary IV.B.2.6. �

Our goal going forward is to show that any formal complete intersection is Cohen-Macaulay. Then we
will have shown the following sequence of implications:

field ⇒ regular local ring

⇒ natural complete intersection

⇒ formal complete intersection

⇒ Cohen-Macaulay.

254
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prop201015b Proposition IV.C.1.5. Assume that (R,m) is local and let x = x1, . . . , xn ∈ m be an R-regular sequence.
Set R = R/ 〈x〉.

prop201015b.a (a) depth(R) = depth(R)− n
prop201015b.b (b) dim(R) = dim(R)− n
prop201015b.c (c) R is Cohen-Macaulay if and only if R is Cohen-Macaulay if and only if R̂ is Cohen-Macaulay.

Proof. (a) Let y = y1, . . . , ym ∈ m be such that y = y1, . . . , ym ∈ R is a maximal R-regular sequence.
Then x,y is a maximal R-regular sequence, so

depth(R) = n+m = n+ depth(R).

(b) We induct on n. The important case is when n = 1. Since x = x1 is R-regular, then x 6∈
⋃

p∈Ass(R) p,

i.e., x 6∈ p for any p ∈ Ass(R). Therefore x 6∈ p for any p ∈ Min(R). Let p0 ( · · · ( pq be a

maximal chain of prime ideals in Spec(R). Here, each pi = pi/ 〈x〉 for pi ∈ Spec(R) and x ∈ pi and
p0 ( · · · ( pq, where q = dim(R). Since x ∈ p0 and x 6∈ p for all p ∈ Min(R), then p0 6∈ Min(R).
Therefore there exists p ∈ Min(R) such that p ( p0 · · · ( pq is a chain of length q + 1 in Spec(R).

Therefore dim(R) ≥ q + 1 = dim(R) + 1. Finish the proof as in Proposition IV.B.1.11.
(c) We have the following sequence of statements:

R is Cohen-Macaulay ⇐⇒ depth(R) = dim(R)

⇐⇒ depth(R)− n = dim(R)− n
⇐⇒ depth(R) = dim(R)

⇐⇒ R is Cohen-Macaulay

⇐⇒ depth(R̂) = dim(R̂)

⇐⇒ R̂ is Cohen-Macaulay. �

thm201015c Theorem IV.C.1.6. Every formal complete intersection is Cohen-Macaulay.

Proof. Assume that R is a formal complete intersection, so R̂ is a natural complete intersection, i.e.,

there exists a regular local ring Q and a Q-regular sequence f such that R̂ ∼= Q = Q/ 〈f〉. Then Corol-
lary IV.B.1.10 implies that Q is Cohen-Macaulay, which means that Q is Cohen-Macaulay by Proposition

IV.C.1.5(c). Then R̂ ∼= Q, so Proposition using IV.C.1.5(c) again gives us that R is Cohen-Macaulay. �

thm201015d Theorem IV.C.1.7. Assume that (R,m) is local and x = x1, . . . , xn ∈ m is an R-regular sequence and
set R = R/ 〈x〉.

thm201015d.a (a) If R is a natural complete intersection, then R is a natural complete intersection.
thm201015d.b (b) If R is a formal complete intersection, then R is a formal complete intersection.

Proof. (a) Since R is a natural complete intersection, there exists a regular local ring Q and y is a

Q-regular sequence such that R ∼= Q/ 〈y〉. Let x̃i ∈ Q be such that x̃i = xi for all i. Then y, x̃ is a
Q-regular sequence such that Q/ 〈y, x̃〉 ∼= (Q/ 〈y〉)/ 〈x〉 ∼= R/ 〈x〉 = R. Since R looks like (regular local
ring) / (regular sequence), R is a natural complete intersection.

(b) Since R is a formal complete intersection, then R̂ is a natural complete intersection. Then

R̂ = R̂/ 〈x〉 ∼= R̂/ 〈x〉 = (natural complete intersection)/(regular sequence).

By part (a), R̂ is a natural complete intersection, so R is a formal complete intersection. �

ques201015e Question IV.C.1.8. Do the converses of the statements in Theorem IV.C.1.7 hold?

prop201015f Proposition IV.C.1.9. If R is standard graded and a geometric complete intersection and x is a ho-
mogeneous R-regular sequence, then R = R/ 〈x〉 is a geometric complete intersection.

Proof. This proof is similar to that of Theorem IV.C.1.7(a), using S = k[X1, . . . , Xd] in place of Q. �

thm201015g Theorem IV.C.1.10. Assume that R is local. The following are equivalent.

thm201015g.i (i) R is a natural complete intersection.
thm201015g.ii (ii) RJXK is a natural complete intersection.
thm201015g.iii (iii) RJX1, . . . , XdK is a natural complete intersection for all d ∈ N+.
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thm201015g.iv (iv) RJX1, . . . , XdK is a natural complete intersection for some d ∈ N+.
thm201015g.v (v) R[X]〈m,X〉 is a natural complete intersection.
thm201015g.vi (vi) R[X1, . . . , Xd]〈m,X1,...,Xd〉 is a natural complete intersection for all d ∈ N+.
thm201015g.vii (vii) R[X1, . . . , Xd]〈m,X1,...,Xd〉 is a natural complete intersection for some d ∈ N+.

Proof. The implications (ii)⇒ (iii) ⇒ (iv) are straightforward. We first show that (i) implies (ii). Let
R ∼= Q/ 〈f〉 be such that Q is a regular local ring and f is a Q-regular sequence. Since RJXK ∼= QJXK/ 〈f〉
and f is Q-regular, then f is also QJXK-regular. Since Q is a regular local ring, then QJXK is also a regular
local ring. Therefore RJXK is a natural complete intersection.

We next show that (iv) implies (i). Assume that RJX1, . . . , XdK is a natural complete intersection. The
sequence X1, . . . , Xd is regular for this ring, so by Theorem IV.C.1.7, this implies that

RJX1, . . . , XdK/ 〈X1, . . . , Xd〉 ∼= R

is a natural complete intersection.
Finally, the proofs for

(i)⇒ (v)⇒ (vi)⇒ (vii)⇒ (i)

are done similarly. �

thm201015h Theorem IV.C.1.11. Assume that R is local. The following are equivalent.

(i) R is a formal complete intersection.
(ii) RJXK is a formal complete intersection.
(iii) RJX1, . . . , XdK is a formal complete intersection for all d ∈ N+.
(iv) RJX1, . . . , XdK is a formal complete intersection for some d ∈ N+.
(v) R[X]〈m,X〉 is a formal complete intersection.

(vi) R[X1, . . . , Xd]〈m,X1,...,Xd〉 is a formal complete intersection for all d ∈ N+.
(vii) R[X1, . . . , Xd]〈m,X1,...,Xd〉 is a formal complete intersection for some d ∈ N+.

Proof. Consider the isomorphisms

̂RJX1, . . . , XdK ∼= R̂JX1, . . . , XdK ∼= ̂R[X1, . . . , Xd]〈m,X1,...,Xd〉.

Apply Theorem IV.C.1.10 using these isomorphisms. �

thm201015i Theorem IV.C.1.12. Assume that R is standard graded. The following are equivalent.

(i) R is a geometric complete intersection.
(ii) R[X] is a geometric complete intersection.
(iii) R[X1, . . . , Xd] is a geometric complete intersectionfor all d ∈ N+.
(iv) R[X1, . . . , Xd] is a geometric complete intersectionfor some d ∈ N+.

Proof. This proof is similar to the proof of Theorem IV.C.1.10. �

defn201020a Definition IV.C.1.13. Assume R is a local formal complete intersection. The codimension of R is

codim(R) = min
{
n ≥ 0

∣∣∣ ∃ RLR Q and Q-regular sequence x = x1, . . . , xn s.t. R̂ ∼= Q/ 〈x〉
}
.

R is a hypersurface if codim(R) ≤ 1. R is a proper hypersurface if codim(R) = 1.

note201020b Note IV.C.1.14. Assume R is a local formal complete intersection.

(a) Since codim(R) = 0 if and only if R is a regular local ring, all regular local rings are hypersurfaces.
(codim(R) = 0 if and only if there exists a regular local ring Q and a Q-regular sequence x with zero

elements such that R̂ ∼= Q/ 〈x〉 ∼= Q, i.e., R̂ is a regular local ring if and only if R is a regular local ring.)
(b) We have

codim(R) = min
{
n ≥ 0

∣∣∣ ∃ RLR (Q, η) and Q-reg. seq. x = x1, . . . , xn ∈ η2 s.t. R̂ ∼= Q/ 〈x〉
}

(1)
= edim(R)− dim(R).
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Since R̂ ∼= Q/ 〈x〉 and Q is a regular local ring, and since x ∈ η2, we have

n = dim(Q)− dim (Q/ 〈x〉)

= edim(Q)− dim(R̂)

= edim(R̂)− dim(R̂)

= edim(R)− dim(R),

so the equality (1) is shown.
(c) R is a proper hypersurface if and only if edim(R) = dim(R) + 1.

IV.C.2. Homological Properties
section063021y

Assume (R,m, k) is local.

defn201020c Definition IV.C.2.1. Let M be a finitely generated R-module. The nth Betti number of M is

βRn (M) = min
{
bn
∣∣ ∃ exact sequence · · · → Rbn → · · · → Rb1 → Rb0 →M → 0

}
.

ex201020d.aex201020d Example IV.C.2.2. (a) Let R = k[[X1, . . . , Xd]] and let M = k = R/ 〈X〉 be an R-module, where
X = X1, . . . , Xd. Then the Koszul complex on the list of variables is

0 // R1 // Rd // R
(

d
d−2

)
// · · · // R( d2 ) // Rd // R // R/ 〈X〉 // 0

So we see that βRn (k) ≤ ( dn ). (These are actually equal. See note below.) More generally this works for
any local ring R and M = R/ 〈x〉, where x = x1, . . . , xd is an R-regular sequence.

ex201020d.b (b) Consider the ring R = k[[X]]/
〈
X2
〉 ∼= k[X]/

〈
X2
〉

and the R-module M = k = R/
〈
X
〉

= R/ 〈x〉 (set

x = X ∈ R). Then we have the infinite resolution

· · · // R
x // R

x // R
x // R // k // 0,

so βRn (k) ≤ 1 (and these are in fact equal).

ex201020d.c (c) Consider the ring R = k[[X,Y ]]/ 〈X,Y 〉2 ∼= k[X,Y ]/ 〈X,Y 〉2 and the R-module M = k = R/ 〈x, y〉,
where we set x = X and y = Y . Then we have the following resolution.

· · · // R8

∂3

(
∂2 0
0 ∂2

)
// R4

∂2=
(
∂1 0
0 ∂1

)
(
x y 0 0
0 0 x y

)
// R2

∂1

( x y ) // R // k // 0

So we see that βRn (k) ≤ 2n for all n ≥ 0 (and these are in fact once again equal). One should also note
that in this context m2 = 0 and x2 = y2 = xy = 0.

ex201020d.d (d) It is a fact that every finitely generated R-module M has a minimal free resolution, which we can denote

· · ·
∂n+1

// Rαn
∂n

// · · ·
∂2

// Rα1

∂1

// Rα0
τ
// M // 0.

Moreover, we can do this such that Im ∂i ⊆ m · Rαi−1 for all i ≥ 1, i.e., entries of matrices representing
∂i are all in m (e.g., each resolution in parts (a) through (c)). Then βRn (M) = αn since

kβ
R
n (M) ∼= TorRn (M,k) ∼= kαn .

(The above are also isomorphic to the Ext module ExtnR(M,k).)
ex201020d.e (e) We have

pdR(M) <∞ ⇐⇒ βn(M) = 0, ∀n� 0.

ex201020d.f (f) This is another result by Auslander, Buchsbaum, and Serre.

R is a regular local ring ⇐⇒ ∀ finitely generated M : βn(M) = 0, ∀n� 0

⇐⇒ βn(k) = 0, ∀n� 0

⇐⇒ ∃n ≥ 0 s.t. βn(k) = 0

⇐⇒ βRdepth(R)+1(k) = 0

⇐⇒ βRdim(R)+1(k) = 0

⇐⇒ βRedim(R)+1(k) = 0
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defn201020e Definition IV.C.2.3 (Avramov). Let M be a finitely generated R-module. The complexity of M is

cxR(M) = inf
{
m ≥ 0

∣∣ ∃α ∈ R+ s.t. ∀n ≥ 0 : βRn (M) ≤ α · nm−1
}
.

(The degree of the zero polynomial is −1 here.)

ex201020f Example IV.C.2.4. Let M be a finitely generated R-module.

(a) cxR(M) = 0 if and only if βRn (M) = 0 for all sufficiently large n > 0 if and only if pdR(M) <∞.
(b) cxR(M) = 1 if and only if βR(M) is bounded and pdR(M) =∞.
(c) For R = k[[X]] and M = k, where X = X1, . . . , Xd, we have βRn (k) = 0 for all n > d and therefore

cxR(k) = 0.
(d) For the ring R = k[[X]]/

〈
X2
〉

we have βRn (k) = 1 for all sufficiently large n > 0, so cxR(k) = 1.

(e) For the ring R = k[[X,Y ]]/ 〈X,Y 〉2 we have βRn (k) = 2n for all n ≥ 0, so cxR(k) =∞.

note201020g Note IV.C.2.5. cxR(M) <∞ means {βRn (M)} is bounded above by a polynomial in n.

Gull Theorem IV.C.2.6 (Gulliksen). The following are equivalent.

(i) R is a formal complete intersection.
(ii) cxR(M) <∞ for all finitely generated M .
(iii) cxR(k) <∞.

cor201022a Corollary IV.C.2.7 (Avramov). If R is a formal complete intersection and p ∈ Spec(R), then Rp is
a formal complete intersection.

Proof. We need to show that cxRp
(Rp/pp) <∞. So

cxRp
(Rp/pp) = cxRp

((R/p)p)

≤ cxR(R/p)

<∞,

where the last line follows by Theorem IV.C.2.6. �

cor201022b Corollary IV.C.2.8. Let x = x1, . . . , xn ∈ m be an R-regular sequence and let R = R/ 〈x〉.
cor201022b.a (a) R is a formal complete intersection if and only if R is a formal complete intersection.

cor201022b.b (b) R is a natural complete intersection if and only if there exists a regular local ring Q // // R and R is

a natural complete intersection.

Proof. We first prove the backwards implication of part (b). Assume that there exists a regular local

ring Q // // R and R is a natural complete intersection. Argue by induction on n. The important case is

for n = 1. Consider the resolution

0

!!

0

m

>>

��
· · · // Rb2 // Rb1

==

R // k // 0.

Then βRn (m) = βRn−1(k) for all n ≥ 1, so cxR(k) = cxR(m). Next we know that x = x1 is R-regular and

m-regular because m ⊆ R. If F is a minimal R-free resolution of m, then F is a minimal R-free resolution

of m = m/xm, so βRn (m) = βRn (m). Then cxR(m) = cxR(m) < ∞ by Theorem IV.C.2.6. Therefore R is a

formal complete intersection and is a natural complete intersection because Q // // R .

We next prove the backwards implication of part (a). Assume R is a formal complete intersection, so

R̂ ∼= R̂ is a natural complete intersection. By Theorem IV.A.7.26, R̂ is a homomorphic image of a regular

local ring Q, i.e., R̂ Qoooo . By part (b), R̂ is a natural complete intersection, and therefore R is a formal

complete intersection by definition. �
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defn201022c Definition IV.C.2.9. If M is a finitely generated R-module, the Poincaré series of M is the “generating
function” for

{
βRn (M)

}
, i.e.,

PRM (t) =

∞∑
n=0

βRn (M)tn.

ex201022d Example IV.C.2.10. (a) Let R be a regular local ring. Then βRn (k) =
(
d
n

)
, where d = dim(R), so by

the binomial theorem,

PRk (t) = (1 + t)d.

(b) Let R = kJXK/
〈
X2
〉
. Then βRn (k) = 1 for all n. Then the Poincaré series of k is a geometic series:

PRk (t) = 1 + t+ t2 + t3 + · · · = 1

1− t
.

(c) Let RJX,Y K/ 〈X,Y 〉2. Then βRn (k) = 2n for all n, so

PRk (t) = 1 + 2t+ 22t2 + 23t3 + · · · = 1

1− 2t
.

(d) The complexity of M is related to the Poincaré series of M .

thm201022e Theorem IV.C.2.11. If R is a formal complete intersection, then every Poincaré series over R is rep-
resented by a rational function with a common denominator.

Idea of Proof. Since M is finitely generated over R, we pass to the completion P R̂
M̂

(t) = PRM (t), where

R̂ ∼= Q/ 〈x〉 is a regular local ring over a Q-regular sequence. Since this has finite projective dimension over

Q, then PQ
M̂

(t) is a polynomial. We can use a Syzygy argument (replace M̂ with N , where

0 // N // R̂b // M // 0

is exact) to show that PRM (t) is a rational function related to PQ
M̂

(t). �

note201022f Note IV.C.2.12. The converse to Theorem IV.C.2.11 fails in general. A current hot research topic is to
determine which rings satisfy the conclusion of Theorem IV.C.2.11 (L. Şega).

Resolutions over Hypersurfaces.

trck201022g Parlor Trick IV.C.2.13. Let S = k[X,Y, Z,W ] and

∆ = XY − ZW =

∣∣∣∣X Z
W Y

∣∣∣∣ .
It is a fact that ∆ is irreducible. Then[

X Z
W Y

] [
Y −Z
−W X

]
=

[
XY − ZW 0

0 −ZW +XY

]
.

Cramer’s Rule says that if A ∈Mn×n(R), then A ·Adj(A) = |A| · In = Adj(A) ·A.

cor201022h Corollary IV.C.2.14. Assume R is a formal complete intersection such that codim(R) ≤ 1, i.e., R is
a hypersurface. Then every finitely generated M has cxR(M) ≤ 1, i.e.,

{
βRn (M)

}
is bounded.

thm201022i Theorem IV.C.2.15. Assume R is a formal complete intersection such that codim(R) ≤ 1, i.e., R is a
hypersurface. Then for every finitely generated M ,

{
βRn (M)

}
is eventually constant. Moreover, βRn (M) is

constant for all n > depth(R)− depth(M,R) ≥ 0.

note201022j Note IV.C.2.16. Compare Theorem IV.C.2.15 to IV.B.2.3. If R is a regular local ring, then pdR(M) =
depth(R)− depth(M,R), so βRn (M) = 0 for all n > depth(R)− depth(M,R) = pdR(M).

defn201022k Definition IV.C.2.17. Let f ∈ R. A matrix factorization of f over R is a pair A,B ∈ Mn×n(R) such
that A ·B = f · In = B ·A.

ex201022l Example IV.C.2.18. For every A ∈ Mn×n(R), A,Adj(A) is a matrix factorization of |A| by Cramer’s
Rule.
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thm201022m Theorem IV.C.2.19 (Eisenbud 1980). Let (S,m, k) be a regular local ring and let 0 6= f ∈ m and let
R = S/fS be a natural hypersurface and let M be a finitely generated R-module and let t = pdR(M) =
depth(R)− depth(M,R). Then the minimal free resolution of M over R has the form

· · ·
ψ // Rb

φ // Rb
ψ // Rb

φ // Rb // Rβt // · · · // Rβ0 // M // 0,

where ψ, φ ∈Mb×b(S) form a matrix factorization of f .

Exercises

exr210722y Exercise IV.C.2.20. Let R be a local ring and p ∈ Spec. Prove or disprove each of the following.

(a) If the localization Rp is Cohen-Macaulay, then R is Cohen-Macaulay.
(b) If the localization Rp is regular, then R is regular.
(c) If the localization Rp is a formal complete intersection, then R is a formal complete intersection.

thm210722z Theorem IV.C.2.21 (Grothendieck). Set S = k[X1, . . . , Xd], let f = f1, . . . , fn be a list of non-constant
homogeneous elements of S. Assume that f is a minimal generating sequence for I = 〈f〉. Then S/I is a
geometric complete intersection if and only if f is S-regular.

exr210722aa Exercise IV.C.2.22. Set S = k[X1, . . . , Xd], let I be a monomial ideal in S, and set R = S/I.

(a) Let f = f1, . . . , fn ∈ [[S]] be a sequence of monomials in S. Prove that f is an S-regular sequence if and
only if f is a pairwise relatively prime list, i.e., for all i 6= j we have gcd(fi, fj) = 1.

(b) Prove that R is a geometric complete intersection if and only if I is generated by a pairwise relatively
prime list of monomials.



CHAPTER IV.D

Artinian Rings

chapter093021al
Throughout this part we assume that R is a non-zero commutative ring with identity.

IV.D.1. Foundational Properties
section063021z

prop201027a Proposition IV.D.1.1. The following are equivalent.

prop201027a.i (i) R satisfies the descending chain condition on ideals, i.e., every descending chain of ideals in R stabilizes,
i.e., for every chain of ideals R ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · · , there exists a natural number n0 ∈ N such that
In = In0

for all n ≥ n0.
prop201027a.ii (ii) R satisfies the minimum condition of non-empty sets of ideals, i.e., every non-empty set of ideals of R

Σ 6= ∅ has a minimal element with respect to containment, i.e., there exists an ideal I0 ∈ Σ such that
for every ideal I ∈ Σ, if I ⊆ I0, then I = I0.

defn201027b Definition IV.D.1.2. R is artinian if it satisfies the descending chain condition on ideals.

ex201027c Example IV.D.1.3. (a) Fields are artinian.
(b) Z is not artinian:

Z ) 2Z ) 4Z ) 8Z ) · · · .
Similarly, k[X] is not artinian:

〈X〉 )
〈
X2
〉
)
〈
X4
〉
) · · · .

(c) k[X]/
〈
X2
〉

is artinian, because it is a finite dimensional vector space over k.

prop201027d Proposition IV.D.1.4. Assume k ⊆ R is a subfield such that dimk R <∞. Then R is artinian.

Proof. For the sake of contradiction, suppose we have the chain R ) I1 ) I2 ) I3 ) · · · . Since these
Ii’s are ideals, they are also R-submodules and therefore k-subspaces. Set d = dimk R <∞. Then since the
containments are proper in the chain we have dimk In ≤ d− n for n = 1, 2, . . . , d. In particular this implies
dimk Id = 0, so we have In = 0 for all n ≥ d. �

note201027e Note IV.D.1.5. If k ⊆ R is a subfield such that dimk R < ∞, then R is noetherian. One argues
as in the proof of Proposition IV.D.1.4 using an ascending chain instead. Alternatively, if I ≤ R, then
dimk I ≤ dimk R < ∞. Therefore I has a finite spanning set over k. Moreover, this spanning set will also
generate I over R, because k ⊆ R implies k-linear combinations are also R-linear combinations.

thm201027f Theorem IV.D.1.6. Every artinian ring is a noetherian ring.

prop201027g Proposition IV.D.1.7. Assume R is artinian.

prop201027g.a (a) Every ideal I ⊆ Jac(R) is nilpotent, i.e., In = 0 for all sufficiently large n.
prop201027g.b (b) Jac(R) is nilpotent.
prop201027g.c (c) Jac(R) = Nil(R).
prop201027g.d (d) R is semilocal, i.e., it only has a finite number of maximal ideals.
prop201027g.e (e) Every prime ideal p ∈ Spec(R) is maximal.
prop201027g.f (f) dimR = 0.

Proof. (a) Let I ⊆ Jac(R). Then I ⊇ I2 ⊇ I3 ⊇ · · · must stabilize, i.e., we must have

In = In+1 = I · In ⊆ Jac(R) · In ⊆ In

for some n ≥ 1. Therefore In = Jac(R) · In for some n ≥ 1 and Nakayama’s Lemma (Fact IV.A.2.4 (d))
implies In = 0, since R noetherian implies In is finitely generated.

(b) Set I = Jac(R) and apply (a).

261
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(c) We have Nil(R)
1
⊆ Jac(R)

2
⊆ Nil(R) and therefore have equality at every step, where 1 holds for all rings

and 2 holds by (b).

(d) Suppose m1,m2,m3, . . . are all distinct maximal ideals. Then we create the descending chain m1 ⊇
m1m2 ⊇ m1m2m3 ⊇ · · · , and we claim m1 · · ·mn ) m1 · · ·mnmn+1 for all n. For the sake of contradiction,
suppose there exists an n ≥ 1 such that m1 · · ·mn = m1 · · ·mn+1 ⊆ mn+1. Since mn+1 is prime, this implies
mi ⊆ mn+1 for some i ≤ n. Both ideals are maximal, implying mn+1 = mi, a contradiction.

(e) Let p ∈ Spec(R). Therefore we have

p ⊇ Nil(R)
3
= Jac(R) = m1 ∩m2 ∩ · · · ∩mn ⊇ m1 · · ·mn,

where 3 holds by c. Then p ⊇ mi for some i, and since mi is maximal and p 6= R, we have p = mi is maximal.

(f) Every prime ideal of R is maximal, so for any p, p′ ∈ Spec(R), the containment p ⊂ p′ is not proper, i.e.,
chains of primes in R are of at most length 0. �

thm201027h Theorem IV.D.1.8. The following are equivalent.

thm201027h.i (i) R is artinian.
thm201027h.ii (ii) R is noetherian and dimR = 0.
thm201027h.iii (iii) R is noetherian and every prime ideal in R is maximal.
thm201027h.iv (iv) R is noetherian and every prime ideal in R is minimal.
thm201027h.v (v) R is noetherian and |Spec(R)| <∞.

cor201027i Corollary IV.D.1.9. Assume R is local or standard graded. Then if R is artinian, it is also Cohen-
Macaulay.

Proof. We have

depth(R) ≤ dim(R) = 0 ≤ depth(R),

where the equality follows from Theorem IV.D.1.8 (ii). Thus we have equality at every step. �

prop201027j Proposition IV.D.1.10. If R is non-negatively graded and artinian, then Ri = 0 for all i� 0 and R0

is artinian. Moreover, all elements with the constant term 0 are nilpotent, i.e., R+ ⊆ Nil(R).

Proof. Since R is artinian, the chain R ⊇ R+ ⊇ R≥2 ⊇ R≥3 ⊇ · · · must stabilize, i.e.,

Rn ⊕Rn+1 ⊕ · · · = R≥n = R≥n+1 = Rn+1 ⊕Rn+2 ⊕ · · ·

for all n� 0. Let R0 ) I1 ) I2 ) I3 ) · · · . Then R0 ) I1 ⊕R+ ) I2 ⊕R+ ) · · · , because R is artinian. [I
DIDN’T FOLLOW THE ARGUMENT HERE.] �

prop201027k Proposition IV.D.1.11. Let S = k[X1, . . . , Xd], let I ( S be a monomial ideal, and set R = S/I. The
following are equivalent.

prop201027k.i (i) R is artinian.
prop201027k.ii (ii) I contains a power of each variable, i.e., for every i = 1, . . . , d there exists some ni ∈ N such that

Xni
i ∈ I.

prop201027k.iii (iii) Every monomial generating sequence for I contains a power of each variable.
prop201027k.iv (iv) There exists an irredundant monomial generating sequence Xe1

1 , . . . , Xed
d , f1, . . . , fm for I.

prop201027k.v (v) rad(R) = 〈X〉.

Proof. (i) =⇒ (ii): Assume R is artinian. Then Proposition IV.D.1.10 implies there is some n0 ∈ N
such that Ri = 0 for all i ≥ n0. Therefore Xj

n0
= 0 ∈ R for all j, so Xn0

j ∈ I for all j.

(ii) =⇒ (iii): Assume (ii) holds and let g1, . . . , gp be a monomial generating sequence for I. By assumption,
for every i = 1, . . . , d we have Xni

i ∈ I = 〈g1, . . . , gp〉 for some ni ≥ 1, implying that gj |Xni
i for some

j = 1, . . . , p. Therefore gj = Xmi
i for some mi ≤ ni.

(iii) =⇒ (iv): This is evident.
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(iv) =⇒ (v): Assume (iv) holds. Then I ( S implies I ⊆ 〈X〉. This justifies 1 in the statement

〈X〉 = 〈X1, . . . , Xd〉 ⊆ rad(I)
1
⊆ rad(〈X〉) = 〈X〉

and we therefore have equality at every step.

(v) =⇒ (ii): If we assume rad(I) = 〈X〉, then for every i = 1, . . . , d we have Xi ∈ rad(I) and thus there
exists some ni such that Xni

i ∈ I.

(ii) =⇒ (i): Assume (ii). Then dimk R ≤ n1 · · ·nd < ∞ and Proposition IV.D.1.4 implies R is artinian.
Alternatively, one can use Theorem IV.D.1.8 since R is noetherian and Xni

i ∈ I (for some ni) implies

Xi
ni

= 0 ∈ R, so the unique prime ideal of R is
〈
X1, . . . , Xd

〉
. �

IV.D.2. Structural Properties
section063021aa

thm201029a Theorem IV.D.2.1. Let (R,m) be local and artinian. Then R is complete and therefore R is a homo-
morphic image of a regular local ring.

Proof. We prove that R is complete, so we want to show that every m-adic Cauchy sequence {xn} in
R converges. To show this, we claim that {xn} is eventually constant.

Proof. Since R is artinian, mn = 0 for all n � 0, i.e., there exists N0 ∈ N such that mn = 0 for all
n ≥ N0. Since {xn} is Cauchy, there exists t ≥ 0 such that for every i, j > t, we have xi − xj ∈ mN0 = 0, or
xi = xj . Therefore not only is {xn} convergent, but it eventually converges to a constant value. X

Then by the Cohen Structure Theorem (Theorem IV.A.7.26), R is a homomorphic image of a regular
local ring. �

thm201029b Theorem IV.D.2.2. Assume that R is artinian. Then R ∼= R1×· · ·×Rn such that each Ri is a complete
local artinian ring. Also, n = |Spec(R)| and if Spec(R) = {m1, . . . ,mn}, then Ri = Rmi for all i = 1, . . . , n.

Exercises

Let R be a non-zero commutative ring with identity. In the following five exercises, we prove Theorem
IV.D.1.6 from earlier in this chapter:

If R is an artinian ring, then R is noetherian.

We accomplish this using the following results from Atiyah and Mac Donald. [Note to Keri: Work these
results with proofs into an earlier section.]

Proposition 8.1. In an artinian ring R, every prime ideal is maximal.

Corollary 8.2. In an artinian ring R, the nilradical is equal to the Jacobson radical.

Proposition 8.3. An artinian ring has only finitely many maximal ideals.

Proposition 8.4. In an artinian ring R, the nilradical is nilpotent.

exr201031ab Exercise IV.D.2.3. Let M be an R-module with a finite descending chain of submodules M = M0 ⊇
M1 ⊇ M2 ⊇ · · · ⊇ Mn = 0 such that each quotient Mi−1/Mi is finitely generated. Prove that M is finitely
generated.

defn201031ac Definition IV.D.2.4. An R-module M is artinian if it satisfies the descending chain condition for
submodules.

exer201031b Exercise IV.D.2.5. Let V be a vector space over a field k. Prove that V is artinian as a k-module if
and only if it is finite dimensional as a k-vector space.

exer201031c Exercise IV.D.2.6. Let M be an artinian R-module, and let N ⊆ M be a submodule. Prove that N
and M/N are artinian.



EXERCISES 264

exer201031d Exercise IV.D.2.7. Let R be an artinian ring. To prove that R is noetherian, let I be an ideal, and
show that I finitely generated as follows.

(a) Use the results from Exercise ?? show that there is a list of (not necessarily distinct) maximal ideals
m1, . . . ,mn of R such that m1 · · ·mn = 0, so Im1 · · ·mn = 0.

(b) Prove that for each ideal J of R, the quotient J/miJ is finitely generated for all i. Conclude that
Im1 · · ·mi−1/Im1 · · ·mi−1mi is finitely generated for all i.

(c) Use the descending chain I ⊇ Im1 ⊇ Im1m2 ⊇ · · · to prove that I is finitely generated.



CHAPTER IV.E

Cohen-Macaulay Rings

chapter093021am
In this part, assume that (R,m, k) is local or standard graded.

IV.E.1. Foundational Properties
section063021ab

defn201029c Definition IV.E.1.1. We say that R is unmixed if for all p ∈ Ass(R), we have dim(R/p) = dim(R).

ex201029d Example IV.E.1.2. (a) If R is an integral domain, then R is unmixed because every domain has that
Ass(R) = {0}. Since R/0 ∼= R, then dim(R/0) = dim(R).

(b) Let R = k[X,Y, Z]/ 〈XY,XZ〉. Then Ass(R) =
{〈
X
〉
,
〈
Y , Z

〉}
, and

R/
〈
X
〉 ∼= k[Y,Z] ∴ dim(R/

〈
X
〉
) = 2,

R/
〈
Y , Z

〉 ∼= k[X] ∴ dim(R/
〈
Y , Z

〉
) = 1.

Since dim(R/
〈
Y ,Z

〉
) 6= dim(R) = 2, R is mixed.

(c) Let R = k[X,Y, Z]/ 〈XY, Y Z,XZ〉. Then Ass(R) =
{〈
X,Y

〉
,
〈
X,Z

〉
,
〈
Y ,Z

〉}
, and for all p ∈ Ass(R),

R/p ∼= k[T ] is a polynomial ring, so dim(R/p) = 1. Since dim(R) = 1 as well, R is unmixed.

prop201029e Proposition IV.E.1.3. Let S = k[X1, . . . , Xd] and let I ( S be a monomial ideal and let R = S/I.
Then R is unmixed if and only if I is unmixed.

Proof. Let p = 〈xi1 , . . . , xim〉 such that i1 < · · · < im. Then R/p ∼= k[T1, . . . , Td−m], so dim(R/p) =
d−m. �

thm201029f Theorem IV.E.1.4. Every Cohen-Macualay ring is unmixed. Therefore, every mixed ring is not Cohen-
Macaulay.

ex201029g Example IV.E.1.5. (a) R = k[X,Y, Z]/ 〈XY,XZ〉 is mixed, so R is not Cohen-Macaulay.
(b) If ∆ is the simplicial complex on {v1, . . . , vd}, then k[X1, . . . , Xd]/J∆ is unmixed if and only if J∆ is

unmixed if and only if ∆ is pure. Therefore if ∆ is not pure, then k[∆] is not Cohen-Macaulay.

ex201029h Example IV.E.1.6 (Converse of Theorem IV.E.1.4 fails). ConsiderR = k[X,Y, Z,W ]/ 〈XY, Y Z,ZW,WX〉,
and set x = X, y = Y , z = Z, and w = W . Then Ass(R) = {〈x, z〉 , 〈y, w〉} and dim(R) = 2, so R is unmixed.
We claim that depth(R) = 1.

Proof. Let f = w − z 6∈ 〈x, z〉 ∪ 〈y, w〉 = ZD0
R(R). Then f is R-regular, so depth(R) ≥ 1. Let

R = R/ 〈f〉 ∼= k[X,Y, Z]/
〈
XY, Y Z,Z2, XZ

〉
, and note that〈

XY, Y Z,Z2, XZ
〉

=
〈
X,Y, Z2

〉
∪
〈
X,Z,��Z

2
〉
∪
〈
Y, Z,��Z

2
〉

=
〈
X,Y, Z2

〉
∪ 〈X,Z〉 ∪ 〈Y, Z〉 .

Then Ass(R) = {〈x, y, z〉 , 〈x, z〉 , 〈y, z〉}. Therefore m ∈ Ass(R), so there is no R-regular sequence. This
means that f is a maximal R-regular sequence, so depth(R) = 1 < 2 = dim(R). Therefore, R is not
Cohen-Macaulay. X

Alternatively, since R is mixed, then R is not Cohen-Macaulay. By Proposition IV.C.1.5c, R is not
Cohen-Macaulay.

prop201029i.aprop201029i Proposition IV.E.1.7. (a) If dim(R) = 0, then R is Cohen-Macaulay.
prop201029i.b (b) If dim(R) ≥ 1 and R is unmixed, then depth(R) ≥ 1.
prop201029i.c (c) Assume that dim(R) = 1. Then R is Cohen-Macaulay if and only if R is unmixed.
prop201029i.d (d) If dim(R) = 1 and R is an integral domain, then R is Cohen-Macaulay.
prop201029i.e (e) If f = f1, . . . , fn ∈ m is an R-regular sequence, each fi is homogeneous, and R = R/ 〈f〉 is mixed, then

R is not Cohen-Macaulay.

265
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Proof. (a) If R is noetherian and has dim(R) = 0, then R is artinian, so R is Cohen-Macaulay by
Corollary IV.D.1.9.

(b) By prime avoidance, we can find m 6⊆ ZD0
R(R). Then there is some f ∈ m \ ZD0

R(R), so f is R-regular
and therefore depth(R) ≥ 1.

(c) Assume that dim(R) = 1 and that R is unmixed. Then part (b) implies that depth(R) ≥ 1 = dim(R) ≥
depth(R), so there is equality at every step. Therefore depth(R) = dim(R), so R is Cohen-Macaulay.

(d) If R is an integral domain of dimension 1, then R is unmixed of dimension 1. Therefore R is Cohen-
Macaulay by part (c).

(e) As in the alternative method in Example IV.E.1.6. �

ex201029j Example IV.E.1.8. (a) LetR = k[X1, . . . , Xd]/I(kd). Then Ass(R) =

{〈
X1, . . . , X̂i, . . . , Xd

〉 ∣∣∣∣
i=1,...,d

}
.

Therefore R is unmixed and dim(R) = 1, so R is Cohen-Macaulay.
(b) (Numerical Semigroup Rings) Let e1, . . . , et ∈ N such that 1 ≤ e1 < e2 < · · · < et and gcd(e1, . . . , et) = 1.

Then R = k[Xe1 , . . . , Xet ] ⊆ k[X] by an integral extension. As an example of an integral extension, we
have

k[Y, Z]/
〈
Y 4 − Z3

〉 ∼= k[X3, X4] 3 a0 + a3X
3 + a4X

4 + a6X
6 + a7X

7 + . . . ,

because k[X3, X
4] only contains elements with powers which are sums of multiples of 3 and 4. The

integral extension of R implies that dim(R) = dim(k[X]) = 1. Since R is a domain, then R is Cohen-
Macaulay.

(c) (Domain of Dimension 2 but not Cohen-Macaulay) Let R = k[X4, X3Y,XY 3, Y 4] ⊆ k[X,Y ]. Then
dim(R) = 2 and R is an integral domain because the integral closure of R is k[X,Y ]. We claim that
depth(R) = 1, so R is not Cohen-Macaulay.

Proof. Since R is an integral domain and dim(R) ≥ 2, R is unmixed, so Proposition IV.E.1.7(b)
implies that depth(R) ≥ 1. An integral domain actually implies that any non-zero non-unit is R-regular.
We want to show that X3Y is a maximal R-regular sequence. As a warning, we note that

R/
〈
X3Y

〉
=
k[X4, X3Y,XY 3, Y 4]

〈X3Y 〉
6∼= k[X4, XY 3, Y 4],

since the ring k[X4, X3Y,XY 3, Y 4]/
〈
X3Y

〉
is not an integral domain but k[X4, XY 3, Y 4] is a subring

of k[X,Y ] and hence an integral domain. We can check that the surjection

k[T,U, V,W ]
τ // // k[X4, X3Y,XY 3, Y 4]

T
� // X4

U � // X3Y

V � // XY 3

W
� // Y 4

is a well-defined ring epimorphism with

Ker(τ) =
〈
TW − UV, TV 2 − U2W,U3 − T 2V, V 3 −W 2U

〉
.

From this, we conclude that

R ∼=
k[T,U, V,W ]

〈TW − UV, TV 2 − U2W,U3 − T 2V, V 3 −W 2U〉
and

R

〈X3Y 〉
∼=

k[T,U, V,W ]

〈TW − UV, TV 2 − U2W,U3 − T 2V, V 3 −W 2U,U〉

∼=
k[T, V,W ]

〈TW, TV 2, T 2V, V 3〉
.

The ring in the previous line is mixed because〈
TW, TV 2, T 2V, V 3

〉
=
〈
T, V 3

〉
∩
〈
T 2, V 2,W

〉
∩ 〈V,W 〉 .

Therefore R is not Cohen-Macaulay. X
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thm201105a Theorem IV.E.1.9. Assume R is Cohen-Macaulay and p ∈ Spec(R). Then Rp is Cohen-Macaulay.

There is some subtlety in this result. Since R is Cohen-Macaulay, we have dim(R) = depth(R). But
it is not immediately obvious how this implies that dim(Rp) = depth(Rp). It is possible in the non-
Cohen-Macaulay case that dim(Rp) ≤ dim(R) but depth(Rp) can be greater than depth(R), as in Example
IV.E.1.10.

Proof. Induct on dim(Rp).
Base case: If dim(Rp) = 0, then Rp is Cohen-Macaulay by Proposition IV.E.1.7(a).
Inductive step: Assume dim(Rp) ≥ 1, so dim(R) ≥ dim(Rp) ≥ 1. Therefore R is Cohen-Macaulay and
dim(R) ≥ 1, and p is not a minimal prime of R. Since R is Cohen-Macaulay, then R is unmixed, and in
particular we know that

Ass(R) = Min(R) 63 p.

In fact, p is not contained in any minimal prime, so p is also not contained in any associated prime. By
prime avoidance, then

p 6⊆
⋃

q∈Ass(R)

q = ZD0
R(R),

which implies that there is some x ∈ p \ZD0
R(R). In other words, there is some x ∈ p that is R-regular. The

ideal x/1 ∈ Rp is pp, so is not a unit. Also, x/1 is Rp-regular because

0 // R
x // R exact =⇒ 0 // Rp

x/1 // Rp exact.

Set R = R/ 〈x〉 and p = p/ 〈x〉 ∈ Spec(R) so that dim(Rp) = dim(Rp) = dim(Rp) − 1. Since R is Cohen-

Macaulay, then R is Cohen-Macaulay. By the inductive hypothesis, we have that Rp is Cohen-Macaulay, so

Rp is Cohen-Macaulay. Since x/1 is Rp-regular, this implies that Rp is Cohen-Macaulay. �

ex201105b Example IV.E.1.10. Consider the ring R = k[X,Y, Z]〈X,Y,Z〉/
〈
XY,XZ,X2

〉
which has dim(R) = 2

and depth(R) = 0, and consider the prime ideal p =
〈
X,Y

〉
. Then

Rp
∼=
k[X,Y, Z]〈X,Y 〉

〈XY,XZ,X2〉

∼=
k[X,Y, Z]〈X,Y 〉〈
��XY ,X,��X

2
〉

∼= k[Y,Z]〈Y 〉.

Then Rp is an integral domain but not a field, so it has depth at least 1. In particular, we have

1 ≤ depth(Rp) ≤ dim(Rp) ≤ edim(Rp) = 1,

so Rp is a regular local ring and therefore Cohen-Macaulay of dimension 1. In particular,

1 = depth(Rp) > depth(R) = 0,

so the depth of a ring can increase when we localize at p.

note201105c Note IV.E.1.11. Let f = f1, . . . , fn ∈ m. In the standard graded cases, assume that each fi is homoge-
neous.

(a) If R is Cohen-Macaulay, then R/ 〈f〉 is unmixed for all R-regular sequences f .
(b) If R is Cohen-Macaulay, then R/ 〈f〉 is artinian for some R-regular sequence f .
(c) In the standard graded case, if R is Cohen-Macaulay, then R/ 〈f〉 is a finite dimensional vector space

over R0 = k for some R-regular sequence f .

IV.E.2. Homological Properties
section063021ac

We will begin with a survey of Ext modules. Let (S, η, k) be local or standard graded, let I � S be a
proper ideal (and homogeneous in the standard graded case), and set R = S/I.
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defn201110a Definition IV.E.2.1. A chain complex over S (or an S-complex) is a sequence of S-module homomor-
phisms

X = · · ·
∂Xi+1 // Xi

∂Xi // Xi−1

∂Xi−1 // · · ·

such that ∂Xi−1 ◦ ∂Xi = 0 (and therefore Ker ∂Xi ⊇ Img ∂Xi+1) for all i ∈ Z and the ith homology module of X

is Hi(X) = (Ker ∂Xi )/(Im ∂Xi−1).

note201110b Note IV.E.2.2. Let X be an S-complex. Then S is exact at Xi if and only if Hi(X) = 0. Therefore
Hi(X) measures how far X is from being exact.

ex201110c Example IV.E.2.3. (a) An augmented projective resolution of an S-module M is an exact sequence

P+ = · · · // P2
// P1

// P0
// M // 0

such that each Pi is projective over S. The associated (truncated) projective resolution is

P = · · · // P2
// P1

// P0
// 0.

Then P is an S-complex such that

Hi(P )

{
= 0 i 6= 0
∼= M i = 0.

(b) Let x1, . . . , xn ∈ S. The Koszul complex K = KS(x) is Ki = S(ni) with basis

{eF | F ( [n] = {1, . . . , n} and |F | = i}

and differential

∂Ki (eF ) =
∑
f

∈ F (−1)σ(f,F )xfeF\{f},

where σ(f, F ) = |{g ∈ F | g < f }|. For instance

∂K3 (e135) = x1e35 − x3e15 + x5e13.

So K has the form

K = 0 // S // Sn // · · · // Sn // S // 0

and is an S-complex. If x is S-regular, then Hi(K) = 0 for all i 6= 0 (and therefore K is a a projective
resolution of S/ 〈x〉). The converse holds if S is local or S is standard graded with homogeneous xi and
x ⊂ η.

note201110d Note IV.E.2.4. Ext solves two problems.

(1) Ext fixes the lack of exactness of Hom.
(2) Ext gives a homological characterization of depth.

note201110d.1 (1) Given the short exact sequence 0 // A // B // C // 0 and an S-module M , the left-
exactness of HomS(M,−) we have the exact sequence

0 // Homs(M,A) // HomS(M,B) // HomS(M,C).

For instance, if S = Z, and M = Z/2Z = Z2, and we consider the short exact sequence

0 // Z
2· // Z // Z/2Z // 0,

then the functor HomZ(Z2,−) yields the exact sequence

0 // HomZ(Z2,Z)︸ ︷︷ ︸
=0

2· // HomZ(Z2,Z)︸ ︷︷ ︸
=0

// HomZ(Z2,Z2)

which can also be written 0 // 0 // 0 // Z2 . Note that this would not be exact if we aug-

mented it with an additional zero on the right. The long exact sequence in ExtS(M,−) “fixes” this lack
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of exactness on the right.

0 // HomS(N,A) // HomS(N,B) // HomS(N,C)

// Ext1
S(N,A) // Ext1

S(N,B) // Ext1
S(N,C)

// Ext2
S(N,A) // · · ·

note201110d.2 (2) David Rees proved

depth(I, S) = min
{
i ≥ 0

∣∣ ExtiS(S/I, S) 6= 0
}

= min
{
i ≥ 0

∣∣ ExtiS(R,S) 6= 0
}
.

con201110e Construction IV.E.2.5. Let M and N be S-modules and let P be a projective resolution of M . We
have

ExtiS(M,N) = H−i(HomS(P,N))

ex201110f Example IV.E.2.6. (a) Let S = Z and let M = Z2 = N . We have the augmented projective resolution
of M

P+ = 0 // Z
2· // Z // Z2

// 0

and the corresponding truncated projective resolution

P = 0 // Z
P1

2· // Z
P0

// 0.

Applying the functor HomZ(−,Z2) to P we obtain

HomZ(P,Z2) = 0 //
Hom(P0,N)

HomZ(Z,Z2)︸ ︷︷ ︸
∼=Z2

//
Hom(P1,N)

HomZ(Z,Z2)︸ ︷︷ ︸
∼=Z2

// 0

∼= 0 // Z2
2·
=0

// Z2
// 0.

Now we can compute the following Ext modules.

Ext0
Z(Z2,Z2) =

Ker
(
Z2

2·
−→
=0
Z2

)
Im (0 −→ Z2)

=
Z2

0
∼= Z2

Ext1
Z(Z2,Z2) ∼= Z2

The corresponding long exact sequence for 0 // Z
· // Z // Z2

// 0 and HomZ(Z2,−) is

0 //
=0

(((
((((HomZ(Z2,Z) //

=0

(((
((((HomZ(Z2,Z) //

∼=Z2︷ ︸︸ ︷
HomZ(Z2,Z2)

//

∼=Z2︷ ︸︸ ︷
Ext1

Z(Z2,Z) //

∼=Z2︷ ︸︸ ︷
Ext1

Z(Z2,Z) //

∼=Z2︷ ︸︸ ︷
Ext1

Z(Z2,Z2)

//
=0

���
���Ext2

Z(Z2,Z) // · · · ,
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which can be written
0 // 0 // 0 // Z2

00 Z2
=0

2· // Z2
// Z2

00 0.

(b) Recall the Fundamental Theorem of Finitely Generated Abelian Groups. If S = Z andM is a finitely gen-
erated Z-module (i.e., a finitely generated abelian group), then there exist positive integers d1, . . . , dp ∈ Z
and a non-negative integer r ∈ Z such that

M ∼= Z/ 〈d1〉 ⊕ · · · ⊕Z/ 〈dp〉 ⊕Zr.
Then an augmented projective resolution P+ of M is

0 // Zp 
d1 0

. . .
0 dp

0


// Zp+r // M // 0.

To compute ExtiZ(M,N) = H−i(HomZ(P,N)) we apply HomZ(−, N) to P and obtain

0 // HomZ(Zp+r, N) // HomZ(Zp, N) // 0,

which can be written as
0 // Np+r  d1 0

. . . 0
0 dp


// Np // 0.

Hence we compute Ext0
Z(M,N) ∼= Nr, and Ext1

Z(M,N) ∼= N/d1N ⊕ · · ·⊕N/dpN , and ExtiZ(M,N) = 0
for all i 6= 0, 1. What if M is not finitely generated? The projective resolution instead looks like

P = 0 // Z(Y ) // Z(Z) // 0

and similar vanishing results hold for any PID.
(c) Recall the Auslander, Buchsbaum, and Serre characterization of regular local rings. The ring S is a

regular local ring if and only if pdSM < ∞ for all S-modules M . Since pdSM < dimS = d < ∞, we
therefore have ExtiS(M,S) = 0 for all i > d.

(d) Let S = kJXK/
〈
X2
〉

and M = k. Then we have the projective resolution

P = · · · X· // S
X· // S

X· // S
X· // S // 0.

To compute Ext modules ExtiS(k, k) we need the exact sequence HomS(P, k), which is isomorphic to

0 // k
X·
=0
// k

X·
=0
// k

X·
=0
// k

X·
=0
// · · · .

Thus we have Ext
(
S k, k) ∼= k 6= 0 for all i ≥ 0.

thm201110g Theorem IV.E.2.7. Assume S is Cohen-Macaulay. Then we have

depth(I, S) = dim(S)− dim(S/I)

= dim(S)− dim(R)

= depth(S)− dim(R)

≤ depth(S)− depth(R)

and therefore R is Cohen-Macaulay if and only if depth(I, S) = depth(S)− depth(R).

cor201110h Corollary IV.E.2.8. Assume S is Cohen-Macaulay and pdS R <∞ (e.g., S is a regular local ring or
S = k[X1, . . . , Xd]). Then R is Cohen-Macaulay if and only if depth(I, S) = pdS R.

Proof. Note that by Auslander and Buchsbaum we have pdS R = depth(S)−depth(R) and then apply
Theorem IV.E.2.7. �
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thm201110i Theorem IV.E.2.9. Assume S is Cohen-Macaulay, and p = pdS R <∞, and q = depth(I, S)

thm201110i.a (a) ExtiS(R,S) = 0 for all i > p and ExtpS(R,S) 6= 0

thm201110i.b (b) ExtiS(R,S) = 0 for all i < q and ExtpS(R,S) 6= 0
thm201110i.c (c) The following are equivalent.

(i) R is Cohen-Macaulay
(ii) ExtiS(R,S) = 0 for all i 6= p
(iii) ExtiS(R,S) = 0 for all i 6= q
(iv) ExtiS(R,S) = 0 for all i < p
(v) ExtiS(R,S) = 0 for all i > q
(vi) ExtiS(R,S) = 0 for all i 6= s for some s

Proof. (a) The vanishing part is true by definition of projective dimension and by the construction of
Ext. For the non-vanishing part, we first note there exists a “minimal” projective resolution

0 // Rβp
∂Pp // Rβp−1 // · · · // Rβ1 // R // 0

of R over S, where the matrices representing the maps have all their entries in m. So we compute

ExtpS(R,S)∼=Rβp/ Im
(
∂Pp
)T

����
Rβp/m ·Rβp ∼= kβp 6=0

where all the entries of Im
(
∂Pp
)T

are in m. Note that kβp 6= 0 is justified, since p = pdS R implies βp 6= 0.

(b) This holds by a previous result by Rees (see Note IV.E.2.42).

(c) Assume R is Cohen-Macaulay. Then depth(I, S) = pdS R, i.e., q = p. Then by parts a and b we have
ExtiS(R,S) = 0 for all i > p = q, and ExtiS(R,S) = 0 for all i < p = q, and ExtqS(R,S) = ExtpS(R,S) 6= 0.

On the other hand, if we instead assume that s ∈ Z such that ExtiS(R,S) = 0 for all i 6= s, then parts a
and b imply that ExtpS(R,S) 6= 0 and ExtqS(R,S) 6= 0, respectively. It follows that p = s = q. Moreover,
depth(I, S) = pdS R now implies that R is Cohen-Macaulay. �

cor201117a Corollary IV.E.2.10. Assume S is a regular local ring or a polynomial ring over k, and assume R is
Cohen-Macaulay. Then for every p ∈ Spec(R), the ring Rp is Cohen-Macaulay. (This is a special case of
Theorem IV.E.1.9)

Proof. Recall the the following correspondence of prime ideals:

R = S/I Soo

p = P/I P ∈ Spec(S) s.t. P ⊇ I.�oo

Then we have
Rp
∼= RP ∼= (S/I)P ∼= SP /IP SPoooo

where SP is regular local ring. Therefore

ExtiSP (Rp, SP ) ∼= ExtiSP (RP , SP ) ∼= ExtiS(R,S)P ,

where the second isomorphism holds since S is noetherian and R is finitely generated over S. Moreover, by
Theorem IV.E.2.9 there exists some s ∈ Z such that ExtiS(R,S)P = 0 for all i 6= s. Hence ExtiSP (Rp, SP ) = 0
for all i 6= s and Theorem IV.E.2.9 implies Rp is Cohen-Macaulay. �

note201117b Note IV.E.2.11. (a) The proof of Corollary IV.E.2.10 shows more than the stated result. If we use
s = p, then pdSP Rp = p = pdS R, which is surprising since usually projective dimension goes down
under localization. Also, using s = q yields depth(I, SP ) = q = depth(I, S), which is again surprising
since usually depth changes under localization. This is very special, and sometimes called “perfect”.

(b) If A is a standard graded ring, then there exists a polynomial ring T = k[Y1, . . . , Ye] // // A , so A ∼= T/J

for some ideal J ≤ T . Therefore Corollary IV.E.2.10 implies Cohen-Macaulayness localizes for A.
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(c) If A is local and Cohen-Macaulay, then it may not be of the form T/J , where T is a regular local ring. So
we do not immediately recover the full strength of Theorem IV.E.1.9 in the local case. We try to fix this
using completion and the Cohen Structure Theorem (Theorem IV.A.7.26). Since A is Cohen-Macaulay,

the completion Â is Cohen-Macaulay as well. The Cohen Structure Theorem implies Â ∼= T/J for some

ideal J ≤ T , where T is a regular local ring. Corollary IV.E.2.10 implies ÂQ is Cohen-Macaulay for any

idea Q ∈ Spec(Â). We want to show that Aq is Cohen-Macaulay for every q ∈ Spec(A), but how do we
find Q related to q such that this process might work? One could try using q, but this is an ideal of A,
not necessarily Â. One could try q · Â = q̂ using the natural map A → Â, but it may be the case that

q̂ /∈ Spec(Â). One could try localizing Â as an A-module with respect to q to obtain
(
Â
)
q
, but it might

not be local.

thm201117c Theorem IV.E.2.12 (lying-over for completions). Assume A is a local ring and q ∈ Spec(A). Then

there exists and ideal Q ∈ Spec
(
Â
)

such that Q ∩A = q.

A
� � // Â

q ∃Q7aa

note201117d Note IV.E.2.13. Could we use this to try to reprove the local case of Theorem IV.E.1.9? Since A is
Cohen-Macaulay, we know Â is Cohen-Macaulay and then the Cohen Structure Theorem implies Â ∼= T/J

for some regular local ring T . Then Corollary IV.E.2.10 implies (Â)Q is Cohen-Macaulay, where Q ∈ Spec(Â)
such that Q ∩A = q. Now, how do we conclude that Aq is Cohen-Macaulay? We have to be cautious, since

localization does not commute with completions, i.e., (Â)Q 6∼= Âq. The solution involves broadening our
context to flat local ring homomorphisms.

defn201117e Definition IV.E.2.14. Let A be a noetherian commutative ring with identity.

defn201117e.a (a) An A-module N is flat if N ⊗A − is exact, i.e., for every exact sequence N ⊗A S is exact (equivalently,

for every short exact sequence S), i.e., TorAi (N,−) = 0 for all i ≥ 1, i.e., TorA1 (N,−) = 0.

defn201117e.b (b) A ring homomorphism A
φ→ B is flat if B is flat as an A-module by restriction of scalars: a · b = φ(a)b.

defn201117e.c (c) Let q ∈ Spec(A) and let φ : A→ B be a ring homomorphism. The fibre of φ over q is

Bq/qBq
∼= (A/q)⊗A Bq

∼= ((A/q)⊗A Aq)⊗A B.

defn201117e.d (d) A local ring homomorphism is a ring homomorphism A
φ→ B between local rings (A,mA) and (B,mB)

such that mAB ⊆ mB , i.e., φ−1(mB) = mA.

ex201117f Example IV.E.2.15. Let A be a noetherian commutative ring with identity.

(a) Free implies projective implies flat. A is flat over A, because A ⊗A − = id is exact. Free implies flat,

because A(X) ⊗A − = id(X) is exact. Projective implies flat: if N is projective over A, then there exists
some N ′ such that N ⊕N ′ is free. This implies N ⊕N ′ is flat, which implies N and N ′ are flat, because

(N ⊕N ′)⊗A − ∼= (N ⊗A −)⊕ (N ′ ⊗A −).

(b) If A is local, then projective implies free. If A is local, then this implication fails, in general. Consider
the ring A = R[X,Y, Z]/

〈
X2 + Y 2 + Z2 − 1

〉
, which has a non-free finitely generated projective module

that comes from the tangent bundle on S2 (which has no nowhere vanishing tangent vector fields).
(c) If N is finitely generated, then N flat implies N projective, but if N is not finitely generated, then

flat no longer implies projective. For instance if A = Z, then consider N = Q = Frac(Z), which is
flat but not free over Z and not projective. (One can make a local example as well: consider Z〈p〉 and
N = Q = Frac(Z〈p〉) for some positive prime p ∈ Z.) The same holds for any integral domain A that is
not a field, e.g., A = k[X1, . . . , Xd] or A = kJX1, . . . , XdK.

(d) The natural map A→ A[X1, . . . , Xd] is flat, because it is free.
(e) The natural map A → AJX1, . . . , XdK is flat, because A is noetherian. (This uses Baer’s criterion for

flatness.)
(f) Any localization A → U−1A for a multiplicatively closed set U ⊆ A is flat, because (U−1A) ⊗A − ∼=

U−1(−) is flat, e.g., A→ Aq is flat for every q ∈ Spec(A).

(g) If a � A, then A→ Âa is flat, because A is noetherian, e.g., if A is local, then A→ Â is flat.

(h) Assume A is local. Then A→ AJX1, . . . , XdK and A→ Â are both flat and local.
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(i) Fibres contain geometric information.

thm201117g Theorem IV.E.2.16. Let ϕ : A→ B be flat and local, and let F = B/mAB be the fibre of ϕ at mA.

thm201117g.a (a) dimB = dimA+ dimF
thm201117g.b (b) depth(B) = depth(A) + depth(F )
thm201117g.c (c) B is Cohen-Macaulay if and only if A and F are each Cohen-Macaulay.
thm201117g.d (d) B is artinian if and only if A and F are each artinian.
thm201117g.e (e) B is a formal complete intersection if and only if A and F are each formal complete intersections.
thm201117g.f (f) If A and F are regular local rings, then B is a regular local ring. If B is a regular local ring, then A is

a regular local ring.

Proof. We leave parts (a), (b), (e), and (f) as black boxes.

(c) First, we know that B is Cohen-Macaulay if and only if depth(B) = dim(B). Then by parts a and a, we
get

depth(A) + depth(F ) = dim(A) + dim(F ).

In particular, we must have depth(A) = dim(A) and depth(F ) = dim(F ) because depth(A) ≤ dim(A)
and depth(F ) ≤ dim(F ), which means that A and F are both Cohen-Macaulay.

(d) We have

B artinian ⇐⇒ dim(B) = 0

⇐⇒ dim(A) + dim(F ) = 0

⇐⇒ dim(A) = 0 = dim(F ) (∵ dim(A),dim(F ) ≥ 0)

⇐⇒ A&F artinian. �

ex201119a Example IV.E.2.17. Let φ : A→ B be flat and local. Then B being a regular local ring does not imply
that F is a regular local ring. Consider

A = kJX2K �
� //

∼ =

kJXK = B.

kJY K

Here, A and B are both regular local rings. The inclusion above is flat because B is free as an A-module
with basis 1, X. But

F = B/mAB = kJXK/
〈
X2
〉

is not a regular local ring because dim(F ) = 0 < 1 = edim(F ).

cor201119b Corollary IV.E.2.18. Let A be local.

cor201119b.a (a) A is Cohen-Macaulay if and only if Â is Cohen-Macaulay if and only if AJXK is Cohen-Macaulay if and
only if AJX1, . . . , XdK is Cohen-Macaulay for all d or for some d.

cor201119b.b (b) Two similar results come from replacing ”Cohen-Macaulay” in part (a) with either “formal complete
intersection” or “regular local ring.”

cor201119b.c (c) A is artinian if and only if Â is artinian.

Proof. Consider the maps α : A→ Â and β : A→ AJXK. Both α and β are flat and local. Their fibres
are

F (α) = Â/mAÂ ∼= Â/mÂ
∼= k (IV.E.2.18.1)

F (β) = AJXK/mAAJXK ∼= kJXK. (IV.E.2.18.2)

Note that F (α) is a field, so is a regular local ring and F (β) is a power series ring, so is a regular local ring.
Therefore (a) and (b) both follow from Theorem IV.E.2.16. Part (c) follows because k is artinian (but kJXK
is not artinian unless d = 0). But A artinian implies that Â ∼= A, so Â is artinian. �

prop201119c Proposition IV.E.2.19. Let A
φ // B

ψ // C be ring homomorphisms and let Q ∈ Spec(B) and let
q = φ−1(Q) ∈ Spec(A).

prop201119c.a (a) There is a map φQ : Aq → BQ given by a
t 7→

φ(a)
φ(t) is a well-defined local ring homomorphism.

prop201119c.b (b) If φ and ψ are flat, then ψ ◦ φ is flat.
prop201119c.c (c) If φ is flat, then φQ is flat.
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prop201119c.d (d) If φ is flat and BQ is Cohen-Macaulay, then Aq is Cohen-Macaulay.

Proof. (a) We use the universal mapping property.

A
φ //

�� !!

B

��
Aq

// BQ.

(b) C ⊗A S ∼= C ⊗B B ⊗A S, using associativity of the tensor product.
(c) Black box.
(d) This follows from (c) and Theorem IV.E.2.16. �

note201119d Note IV.E.2.20. We give a complete alternate proof of the local case of Theorem IV.E.1.9. Let Q ∈
Spec(Â) such that Q ∩ A = q. Then the map A → Â is flat and A Cohen-Macaulay implies Â is Cohen-

Macaulay, which implies ÂQ is Cohen-Macaulay. By Corollary d, then Aq is Cohen-Macaulay. �

ex201119e Example IV.E.2.21. Let S = k[X,Y ].

ex201119e.a (a) Let I =
〈
X2, Y 2

〉
and let R = k[X,Y ]/

〈
X2, Y 2

〉
. We want to calculate ExtiS(R,S). Theorem IV.E.2.9

guarantees ExtiS(R,S) = 0 for all i 6= p = q, where p = pdS(R) and q = depth(I, S) = 2. To find p,
resolve R over S using the Koszul complex:

K =

 0 // S

 Y 2

−X2


// S2

(
X2 Y 2

)
// S // 0



K∗ = HomS(K,S) =

 0 // S

X2

Y 2


// S2

(
Y 2 −X2

)
// S // 0


We need to show K∗ ∼= Σ−2K is exact at each degree. But

ExtiS(R,S) = H−i(K
∗) ∼= H−i(Σ

−2K) = H−i+2(K) =

{
R if − i+ 2 = 0

0 if − i+ 2 6= 0
=

{
R if i = 2

0 if i 6= 2.

ex201119e.b (b) Let I =
〈
X2, XY, Y 2

〉
. Therefore R = S/I is artinian, so R is Cohen-Macaulay of dimension 0, so R

has depth 0. Also,

p = pdS(R) = depth(S)− depth(R) = 2− 0 = 2,

using Auslander-Buchsbaum. The resolution is

F =


0 // S2


Y 0
−X Y

0 −X


// S3

(
X2 XY Y 2

)
// S // 0



F ∗ =


0 // S


X2

XY
Y 2


// S3

Y −X 0
0 Y −X


// S2 // 0


.
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We can calculate Ext in each degree:

HomS(R,S) ∼= Ext0
S(R,S) = H0(F ∗) = 0 (∵ S integral domain)

Ext1
S(R,S) = H−1(F ∗) = 0

Ext2
S(R,S) = H−2(F ∗) ∼=

S2〈(
Y
0

)
,
(−X
Y

)
,
(

0
X

)〉 .
By Nakiyama’s Lemma, β0(Ext2

S(R,S)) = 2.
ex201119e.c (c) Let T = k[a, b, α, β] and J = 〈aα, ab, bβ〉 and A = T/J . A is Cohen-Macaulay of dimension 2, so

pdT (A) = depth(T )− depth(A) = 4− 2 = 2. We should find that ExtiT (A, T ) = 0 for all i 6= 2. The free
resolution of A over T looks like

G =


0 // T 2


b 0
−α β
0 −a


// T 3

(
aα ab bβ

)
// T // 0



G∗ =


0 // T


aα
ab
bβ


// T 3

b −α 0
0 β −a


// T 2 // 0


.

We get that

Ext2
T (A, T ) ∼=

T 2〈(
b
0

)
,
(−α
β

)
,
(

0
−a
)〉 .

By Nakayama’s Lemma, βT0 (Ext2
T (A, T )) = 2.

thm201119f Theorem IV.E.2.22. Assume S is a regular local ring or k[X] and let F be a minimal S-free resolution
of R. If R is Cohen-Macaulay, then ΣpF ∗ is a minimal S-free resolution of ExtpS(R,S). In particular,

βS0 (ExtpS(R,S)) = βSp (R), and

βSi (ExtpS(R,S)) = βSp−i(R).

IV.E.3. The Type of a Cohen-Macaulay Ring
section063021ad

Assume S is a regular local ring or a polynomial ring k[X] and I ≤ S be an ideal (which is homoegeneous
in the standard graded case) and R = S/I.

disc201119g Discussion IV.E.3.1. Let I =

n⋂
i=1

Qi be an irredundant irreducible decomposition. Then n, the number

of ideals in the previous decomposition, is a measure of the complexity of I or R. A problem is that n might
depend on the decomposition. However, everything is okay when I is a monomial ideal in S = k[X].

prop201119h Proposition IV.E.3.2. Assume that R is artinian and I =
⋂n
i=1Qi is an irredundant irreducible de-

composition. Then n = dimk HomR(k,R). Therefore n is independent of choice of decomposition. Moreover,
for p = pdS(R),

n = βSp (R) = βS0 (ExtpS(R,S)).

ex201119i Example IV.E.3.3. Let S = k[X,Y ]. We consider the same examples as in Example IV.E.2.21.

(a) Let I =
〈
X2, Y 2

〉
. Then n = 1.

(b) Let I =
〈
X2, XY, Y 2

〉
=
〈
X2, Y

〉
∩
〈
X,Y 2

〉
. Then n = 2.

In each case, this agrees with the calculation of βSp (R) and βS0 (ExtpS(R,S)) in Example IV.E.2.21.
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(a) Check Ext0
R(k,R)

?∼= k. Alternately, we can check

k
?∼= homR(k,R) = HomR(R/m, R) ∼= (0 :R m) = {r ∈ R |mr = 0} .

A visualization of this is below:

X X2

Y

Y 2

The region shaded in orange corresponds to R. We can find the elements annihilated by m by looking
at lattice points in the orange region which leave the region when multiplying by X or Y . Furthermore,
the basis XY ∈ R can be represented by the point (1, 1) in the graph above, and so R has vector space
dimension 1.

(b) Check Ext0
R(k,R)

?∼= k2.Alternately, we can check

k2
?∼= homR(k,R).

A visualization of this is below:

X X2

Y

Y 2

The basis X,Y ∈ R can be represented by the points (1, 0) and (0, 1) in the graph above, and so R has
vector space dimension 2.

thm201119j Theorem IV.E.3.4. Assume R is Cohen-Macaulay and p = pdS(R). Set µ = µpR(R) = dimk(ExtpR(k,R)).
Let x ∈ mS be a maximal R-regular sequence (which is graded in the standard graded case). Set J = I + 〈x〉,
which satisfies S/J ∼= R/ 〈x〉 artinian. Then the number of ideals in an irredundant irreducible decomposition
of J is independent of decomposition and independent of choice of x, and equals

dimk(ExtpR(k,R)) = βSp (R) = βS0 (ExtpS(R,S)).

ex201119k Example IV.E.3.5. Let S = k[a, b, α, β] and let I = 〈aα, ab, bβ〉 = 〈a, b〉∩〈a, β〉∩〈b, α〉 and let R = S/I.
The maximal R-regular sequence in S is a− α, b− β. Then

R/
〈
a− α, b− β

〉 ∼= k[a, b, α, β]

〈aα, ab, bβ, a− α, b− β〉
∼=

k[a, b]

〈a2, ab, b2〉
.

In the last step, there are two irreducible factors, which is the same as βS0 (Ext2
S(R,S)) by Example

IV.E.2.21(c). Next, check Ext2
R(k,R)

?∼= k2. Calculating Ext is messy, so we do this by showing Ext2
R(k,R) ∼=

HomR(k,R), since we calculated HomR(k,R) ∼= k2 in Example IV.E.3.3.

prop201119l Proposition IV.E.3.6. Let A be a non-zero, noetherian commutative ring with identity, and let M and
N be finitely generated A-modules. Let x = x1, . . . , xn ∈ A be an M -regular sequence such that xN = 0. Set
A = A/ 〈x〉 and M = M/ 〈x〉. Then

ExtiA(N,M) ∼= Exti−nA (N,M)

for all i ≤ n. In particular, if i < n, then ExtiA(N,M) = 0, because i− n < 0 and

ExtnA(N,M) ∼= Ext0
A(N,M) = HomA(N,M) = HomA(N,M).

Proof. We prove this by inducting on n. The base case is when n = 1. If x1 is M -regular, then there
is a short exact sequence

0 // M
x1· // M // M // 0.
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From this we obtain the following long exact sequence in Ext.

0 // HomA(N,M)
x1 // HomA(N,M) // HomA(N,M)

// Ext1
A(N,M)

x1 // Ext1
A(N,M) // Ext1

A(N,M)

// Ext2
A(N,M)

x1 // · · ·

Since x1 annihilates N by assumption, the induced multiplication maps in the long exact sequence in the
previous display are each the zero map. A short argument using the exactness of the sequence shows that
HomA(N,M) = 0 and yields the short exact sequences

0 // ExtiA(N,M) // ExtiA(N,M) // Exti+1
A (N,M) // 0

for every i ≥ 1, and

0 // HomA(N,M)
∴∼=
// Ext1

A(N,M) // 0.

In the inductive step the argument in similar. �

Note. If x ∈ A such that xN = 0, then xExtiA(N,M) = 0 for all i and for all M .

defn201114a Definition IV.E.3.7. Assume R is Cohen-Macaulay and δ = depth(R). Then the type of R (also known
as the Cohen-Macaulay type) is

type(R) = µδR(R) = dimk ExtδR(k,R) = dimk HomR(kR),

where R = R/ 〈x〉 and x is a maximal R-regular sequence. More generally, for every i ∈ Z the ith Bass
number of R is

µiR(R) = dimk ExtiR(k,R).

The Bass series of R (named after Hyman Bass) is

IR(t) =

∞∑
i=δ

µiR(R)ti.

ex201124b Example IV.E.3.8. (a) By Example IV.E.3.3 we have

type

(
k[X,Y ]

〈X2, Y 2〉

)
= 1.

(b) Also by Example IV.E.3.3 we have

type

(
k[X,Y ]

〈X2, XY, Y 2〉

)
= 2.

(c) By Example IV.E.3.5 we have

type

(
k[a, b, α, β]

〈aα, ab, bβ〉

)
= 2.

(d) More generally we have

type

(
k[X,Y]

I(ΣG)

)
= number of minimal vertex covers of G.

For instance, we obtain the conclusion of part (c) if we consider the graphs

G = a b ΣG = α a b β,

since the two minimal vertex covers of G are {a} and {b}.
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Proof. Set R = k[X,Y]/I(ΣG) and let X1 − Y1, . . . , Xd − Yd ∈ R. Then we have

R = R/
〈
X1 − Y1, . . . , Xd − Yd

〉 ∼= k[X]

〈X2
1 , . . . , X

2
d〉+ I(G)

and compute the irredundant irreducible decomposition〈
X2

1 , . . . , X
2
d

〉
+ I(G) =

〈
X2

1 , . . . , X
2
d

〉
+

⋂
V ′ a minimal
vertex cover

〈V ′〉

=
⋂

V ′ a minimal
vertex cover

(
〈V ′〉+

〈
X2

1 , . . . , X
2
d

〉)
. �

prop201124c Proposition IV.E.3.9. Assume R is Cohen-Macaulay and let y be any R-regular sequence. Then

type(R/ 〈y〉) = type(R).

Proof. We may extend y to a maximal R-regular sequence y, z. Then by definition we have

type(R) = type(R/ 〈y, z〉) = type(R/ 〈y〉),

since z is a maximal R/ 〈y〉-regular sequence. �

prop201124d Proposition IV.E.3.10. Assume R is local is Cohen-Macaulay. Then

type(R̂)
(a)
= type(R)

(b)
= type(RJX1, . . . , XeK).

Proof. (a) We present two proofs of this. First, since ExtiR(k, R̂) ∼= ExtiR(k,R) for all i ∈ Z we have

type R̂ = dimk ExtδR(k, R̂) = dimk ExtδR(k,R) = typeR

as desired. Second, if x is a maximal R-regular sequence, then it is also an R̂-regular sequence and

R̂/ 〈x〉 ∼= R̂/ 〈x〉 ∼= R/ 〈x〉 .

Thus

type R̂ = type R̂/ 〈x〉 = typeR/ 〈x〉 = typeR.

(b) It is a fact that the sequence X = X1, . . . , Xe is RJX1, . . . , XeK-regular. Proposition IV.E.3.9 then implies

type(RJX1, . . . , XeK) = type(RJX1, . . . , XeK/ 〈X1, . . . , Xe〉︸ ︷︷ ︸
∼=R

) = typeR. �

prop201124e Proposition IV.E.3.11. Assume R is standard graded and Cohen-Macaulay. Then

typeRm = typeR = typeR[X1, . . . , Xe].

Proof. Note that ExtiRm
(k,Rm) ∼= ExtiR(k,R) and X1, . . . , Xe is R[X1, . . . , Xe]-regular and then argue

as in the proof of Proposition IV.E.3.10. �

cor201124f Corollary IV.E.3.12. If R is a geometric complete intersection, or a formal complete intersection, or
a natural complete intersection, then typeR = 1.

Proof. We prove this in number of cases. In the first case, if R is a field, then typeR = 1 since
Homk(k, k) ∼= R1. In the second case, if R is a regular local ring, then a regular system of parameters x is
an R-regular sequence such that R/ 〈x〉 is a field and therefore by the first case we have

typeR = typeR/ 〈x〉 = 1.

In the third case, if R is a natural complete intersection, then R ∼= S/ 〈y〉 where S is a regular local ring and
y is an S-regular sequence. Therefore

typeR = typeS = 1,

where the first equality holds by Proposition IV.E.3.9 and the second equality holds by the second case. In

the fourth case, if R is a formal complete intersection, then R̂ is a natural complete intersection and we have
the following by Proposition IV.E.3.10 and the third case:

typeR = type R̂ = 1.
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Finally, in the fifth case, if R is a geometric complete intersection, then by Proposition IV.E.3.11 and the
third case we have

typeR = typeRm = 1,

since Rm is a natural complete intersection. �

disc201201a Discussion IV.E.3.13. What about localization? We do not expect typeRp = typeR, but one might
hope that typeRp ≤ typeR. One can try to show that

dimk(p) Extδ
′

Rp
(k(p), Rp) ≤ dimk ExtδR(k,R),

where δ and δ′ are the depths of R and Rp, respectively, but this is difficult to do.

thm201201b Theorem IV.E.3.14. Let A
ϕ→ B be a flat, local homomorphism. Assume B is Cohen-Macaulay (i.e.,

A and F = B/mAB are Cohen-Macaulay). Then typeB = typeA · typeF and IB(t) = IA(t) · IF (t).

thm201201c Theorem IV.E.3.15. Let (T,mT , k) be local and Cohen-Macaulay. Then for every ideal q ∈ Spec(T ) we
have

typeTq ≤ typeT.

Proof. We will first prove a special case. Suppose T is complete. Then the Cohen Structure Theorem
implies T = S/I for some regular local ring S. By the previous section we know Tq = SQ/IQ is Cohen-
Macaulay, and p = pdS T = pdSQ Tq, and

typeTq = βSQp (Tq) = βSQp (TQ) ≤ βSp (T ) = typeT.

Alternatively, one also has

typeTq = β
SQ
0

(
ExtpSQ(TQ, SQ)

)
= β

SQ
0

(
ExtpSQ(TQ, SQ)

)
= β

SQ
0 (ExtpS(T, S)Q)

≤ βS0 (ExtpS(T, S))

= typeT.

(See the unnumbered Note below.) Now for the general case. Let T be local with prime ideal q ∈ Spec(T ).

Then there exists a prime ideal Q ∈ Spec(T̂ ) such that ϕ(q) = Q, where ϕ : T → T̂ is the typical map. We
then have

typeT
(1)
= type T̂ ≥ type T̂Q

(2)
= typeTQ · type(F (Q)),

where F (Q) is the closed fibre of ϕQ, i.e., F (Q) = T̂Q/qT̂Q. Equality (1) is a property of completions we
established in a previous section. The inequality follows from the special case above. Equality (2) follows

from Theorem IV.E.3.14, since Tq
ϕQ→ T̂Q is flat and local. Since the completion T̂Q is Cohen-Macaulay, so

are Tq and F (Q), implying that typeF (Q) ≥ 1. By the previous display the desired result then follows. �

Note. In general every generating sequence for a module M gives rise to a generating sequence for MQ

over SQ, so β
SQ
0 (MQ) ≤ βS0 (M). Moreover, if L is a free resolution of M over S, then LQ is a free resolution

of MQ over SQ, and therefore β
SQ
i (MQ) ≤ βSi (M) and pdSQMQ ≤ pdSM .

ex201201d Example IV.E.3.16. Let Kd be the complete graph on d vertices. Then the ring R = k[X]/I(Kd) is
Cohen-Macaulay of dimension one and typeR = d− 1. A maximal R-regular sequence is Xd − (X1 + · · ·+
Xd−1).

ex201201e Example IV.E.3.17. Let Cd be the d-cycle. Then the ring R = k[X]/I(Cd) is Cohen-Macaulay if and
only if d = 3 or d = 5.

(a) If d = 3, then C3 = K3 and typeR = type(K[X]/I(K3)) = 3− 1 = 2.
(b) If d = 5, then typeR = 1. This takes work to show and we omit it here.
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Exercises

Let k be a field. The point of the following four exercises is to give perspective on Theorem IV.E.2.9, which
contains a homological characterization of the Cohen-Macaulay property.

exr210722ad Exercise IV.E.3.18. Set S = k[X] and R = S/〈Xa〉 for a fixed integer a ≥ 2.

(a) Is R Cohen-Macaulay or not?
(b) Verify directly, without invoking Theorem IV.E.2.9, that ExtiS(R,S) = 0 for all i 6= 1 and Ext1

S(R,S) ∼=
R.

exr210722ae Exercise IV.E.3.19. Set S = k[X,Y ] and R = S/〈Xa, Y b〉 for fixed integers a, b ≥ 2.

(a) Is R Cohen-Macaulay or not?
(b) Verify directly, without invoking Theorem IV.E.2.9, that ExtiS(R,S) = 0 for all i 6= 2 and Ext2

S(R,S) ∼=
R.

exr210722af Exercise IV.E.3.20. Set S = k[X,Y ] and R = S/〈Xa, XY, Y b〉 for fixed integers a, b ≥ 2.

(a) Is R Cohen-Macaulay or not?
(b) Verify directly, without invoking Theorem IV.E.2.9, that ExtiS(R,S) = 0 for all i 6= 2 and Ext2

S(R,S) 6= 0.
(c) Prove or disprove: Ext2

S(R,S) ∼= R.

exr210722ag Exercise IV.E.3.21. Set S = k[X,Y ] and R = S/〈X2, XY 〉.
(a) Is R Cohen-Macaulay or not?
(b) Verify directly, without invoking Theorem IV.E.2.9, that ExtiS(R,S) = 0 for all i 6= 1, 2 and Ext1

S(R,S),Ext2
S(R,S) 6=

0.



CHAPTER IV.F

Gorenstein Rings

chapter093021an
As usual, let S be local or standard graded, let I � S be a proper ideal (and homogeneous in the

standard graded case), and set R = S/I. [SEAN: this page looks funny to me. Do you want this moved into
the \chapter environment instead?

IV.F.1. Foundational Properties
section063021ae

defn201201f Definition IV.F.1.1. A ring A is Gorenstein if it is Cohen-Macaulay of type 1, where A is local or
standard graded.

ex201201g Example IV.F.1.2. (a) k[X,Y ]/
〈
X2, Y 2

〉
is Gorenstein.

(b) The ring k[X,Y ]/
〈
X2, XY, Y 2

〉
is not Gorenstein, because its type is 2.

(c) k[a, b, α, β]/ 〈aα, ab, bβ〉 is likewise not Gorenstein, since its type is 2.
(d) The ring k[X,Y]/I(ΣG) is Gorenstein if and only if the number of minimal vertex covers of G is 1.
(e) The ring k[X]/I(Kd) is Gorenstein if and only if d− 1 = 1 if and only if d = 2.
(f) The ring k[X]/I(Cd) is Gorenstein if and only if d = 5.

prop201201h Proposition IV.F.1.3. In the local setting, we have the following implications.

Field +3 RLR +3

��

natural CI +3 formal CI
IV.E.3.12

+3 Gorenstein
def ′n

+3 CM

UFD

ex201203a Example IV.F.1.4. (a) A ring being Cohen-Macaulay does not imply that the ring is Gorenstein, by
Example IV.F.1.2.

(b) A ring being Gorenstein does not imply that the ring is a formal complete intersection. Consider
k[X1, . . . , X5]/I(C5), which is Gorenstein by Example IV.F.1.2. But I(C5) is minimally generated by
five monomials and dim(R) = 2. If R were a formal complete intersection , then dim(R) is the number
of variables minus the number of generators, so we would have dim(R) = 5−5 = 0. So R is not a formal
complete intersection.

prop201203b Proposition IV.F.1.5. Let A be local or standard graded and let x = x1, . . . , xn ∈ mA be an A-regular
sequence (which is homogeneous in standard graded case). Set A = A/ 〈x〉. Then A is Gorenstein if and
only if A is Gorenstein.

Proof. We have that A is Cohen-Macaulay if and only if A is Cohen-Macaulay and that type(A) =
type(A). �

prop201203c Proposition IV.F.1.6. Let A be local. Then A is Gorenstein if and only if Â is Gorenstein if and only
if AJXK is Gorenstein for some (or all) X = X1, . . . , Xd.

Proof. We have that A is Cohen-Macaulay if and only if Â is Cohen-Macaulay if and only if AJXK is

Cohen Macaulay. Also, we have that type(A) = type(Â) = type(AJXK). �

prop201203d Proposition IV.F.1.7. Let A be standard graded. Then A is Gorenstein if and only if AmA is Goren-
stein if and only if A[X] is Gorenstein for some (or all) X = X1, . . . , Xd.

prop201203e Proposition IV.F.1.8. If A is Gorenstein and local, and p ∈ Spec(A), then Ap is Gorenstein.

Proof. If A is Cohen-Macaulay, then Ap is Cohen-Macaulay. Also,

1 = type(A) ≥ type(Ap) ≥ 1,

so type(Ap) = 1. �

281
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ex201203f Example IV.F.1.9. The converse of Proposition IV.F.1.8 fails, using Exercise IV.C.2.20. There is a ring
A which is not Cohen-Macaulay but Ap is a field.

IV.F.2. Homological Properties
section063021af

disc201203g Discussion IV.F.2.1. A is an A-module and it is free. In particular, A is projective and flat. The
question that follows is to ask if A is always injective as an A-module? The answer is that this is almost
never true.

fact201213h Fact IV.F.2.2. If A is injective as an A-module, then A is artinian. Moreover, if A has a finitely
generated non-zero injective module, then A is artinian.

disc201203i Discussion IV.F.2.3. This is frustrating, because in linear algebra, a very important tool is the vector
space dual: V 7→ V ∗ = Homk(V, k). This is nice because it is exact, i.e., k is injective as a k-module. How
can we make HomA(−, A) useful if A is not injective as an A-module? Most modules are not projective,
but if we approximate a module by projective modules, this leads to projective resolutions and projective
dimension. We are going to do an injective version of this.

fact201203j Fact IV.F.2.4. For every A-module M , there exists an A-module monomorphism M �
� i // I such that

I is injective. This implies that M ∼= Im(i) ⊆ I, so M is (isomorphic to) a submodule of an injective module.

Sketch of Proof. Proof by wishful thinking. Step 1 is to prove the result for A = Z. Step 2 is to use
the result of Z to get the result for A in general.
Step 1: A Z-module N is injective if and only if it is divisible, i.e., for every x ∈ N and for every n ∈ Z\{0},
there exists a y ∈ N such that ny = x. We then get injectivity by looking at the diagram

0 // Z
n //

x

��

�

Z

∃y~~
N

and using Baer’s criterion. In general, injective implies divisible and the converse holds if A is a PID. For
example, Q is divisible as a Z-module. Furthermore, every quotient of a divisible module is divisible. In
particular, Q/Z is divisible, so it is injective over Z. How can we show that every Z-module is a submodule
of an injective Z-module? Use the Pontryagin dual

(−)V = HomZ(−,Q/Z).

Then we take a dual twice to get the following maps:

MV Z(A)τoooo

M
� � δ // MV V �

� // (Z(A))V.

The δ map is defined by δ(m) = [f 7→ f(m)], and so is injective. The final module is injective because

(Z(A))V = HomZ(Z(A),Q/Z) ∼= HomZ(Z,Q/Z)̂ ∼= (Q/Z)̂.

The our conclusion is that M
� � // I = (Z(A))V .

Step 2: There is a natural ring homomorphism ψ : Z → A. Therefore every A-module is a Z-module by
restriction of scalars. Let M be an A-module. Then M is a Z-module, so there is a Z-linear monomorphism

M �
� α // J such that J is injective over Z. The goal is to show that M is a submodule of an injective

A-module. So consider taking Hom of α and using Hom cancellation on the left to get

HomA(A,M) ⊆ HomZ(A,M) �
� // HomZ(A, J),

M

∼=

OO

% �

33

where the constructed map needs to respect the A-linear structure. We can see that HomZ(A, J) is injective
over A using Hom-tensor adjointness, because

HomA(−,HomZ(A, J)) ∼= HomZ(A⊗A −, J) ∼= HomZ(−, J),
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which is exact. More generally, if B → C is a ring homomorphism and L is injective as a B-module, then
HomB(C,L) is injective as a C-module. As another note, we have seen a map similar to HomZ(A,−) with
Z→ A before, in the map HomS(R,S) with S → R. We used the latter map to detect Cohen-Macaulayness
using ExtiS(R,S). �

thm201209a Theorem IV.F.2.5. For every A-module M , there exists an exact sequence

0 // M // I0 // I1 // I2 // · · ·
such that each Ij is injective over A.

Proof. One can construct the following diagram from left-to-right where each diagonal sequence is
exact.

0

!!

0 0

0

��

M ′

==

  
�

M ′′′

<<

0 // M //

=
  

I0

>>

// I1 //

!!

I2 //

==

· · ·

M

>>

  

�

M ′′

!!

==
�

0

>>

0 0

==

0

It follows that the horizontal sequence is also exact. �

defn201209b Definition IV.F.2.6. An augmented injective resolution of M is an exact sequence

+I = 0 // M // I0 // I1 // · · ·
such that each Ij is injective. The corresponding (truncated) injective resolution is the A-complex

I = 0 // I0 // I1 // · · · ,

where I is exact at every position except at I0 where the homology is isomorphic to M . If M has an injective
resolution I such that Ij = 0 for all sufficiently large j, then M has finite injective dimension and we write
idAM <∞. The injective dimension of M is the length of the shortest such injective resolution, i.e.,

idAM = inf
{
`
∣∣ ∃ an injective resolution of M s.t. Ij = 0, ∀j > `

}
.

We say that idA(M) measures how far M is from being injective.

ex201209c Example IV.F.2.7. An injective resolution of Z over Z is

0 // Z // Q //

=

Q/Z //

=

0.

I0 I1

Therefore idZZ ≤ 1 and in fact idZZ = 1, because Z is not divisible and therefore not injective, so idZ > 0.
(Note that idAM = 0 if and only if M is injective over A.)

thm201209d.athm201209d Theorem IV.F.2.8. (a) One can compute ExtiA(N,M) using an injective resolution of M :

ExtiA(N,M) = Hi(HomA(N, I)).

thm201209d.b (b) The following are equivalent.
thm201209d.b.i (i) M is injective over A.

thm201209d.b.ii (ii) ExtiA(N,M) = 0 for all i ≥ 1 and for all A-modules N .
thm201209d.b.iii (iii) Ext1

A(N,M) = 0 for all finitely generated A-modules N .
thm201209d.b.iv (iv) [Baer] Ext1

A(A/a,M) = 0 for all ideals a ≤ A.
thm201209d.b.v (v) idAM = 0
thm201209d.c (c) Let n ≥ 0 be given. The following are equivalent.
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thm201209d.c.i (i) idAM ≤ n
thm201209d.c.ii (ii) ExtiA(N,M) = 0 for all i > n and for all A-modules N .
thm201209d.c.iii (iii) Extn+1

A (N,M) = 0 for all finitely generated A-modules N .

thm201209d.c.iv (iv) Extn+1
A (A/a,M) = 0 for all ideals a ≤ A.

thm201209d.d (d) [Bass] If A is local or standard graded and M 6= 0 is a finitely generated (graded) A-module with finite
injective dimension, then idAM = depth(A).

thm201209d.e (e) If A is local or standard graded and there exists a finitely generated (graded) A-module M 6= 0 with
finite injective dimension, the A is Cohen-Macaulay.

thm201209e Theorem IV.F.2.9 (Auslander-Buchsbaum, Serre). Assume A is local. The following are equivalent.

thm201209e.i (i) A is a regular local ring.
thm201209e.ii (ii) Every A-module has finite injective dimension over A.
thm201209e.iii (iii) Every finitely generated A-module has finite injective dimension over A.
thm201209e.iv (iv) The residue field has finite injective dimension over A.

ex201209f Example IV.F.2.10. (a) Set R = k[X]/
〈
X2
〉
. Then R is injective over R, but idR k = ∞. To show

that R is injective, we need to show that Ext1
R(N,R) = 0 for all finitely generated N . Notice that any

such N is a finite dimensional vector space over k ⊆ R. We prove Ext1
R(N,R) = 0 by induction on

` = dimkN . As a base case assume ` = 1, i.e., N ∼= k. Then a projective resolution of k is

P = · · · X· // R
X· // R

X· // R
X· // 0

and we obtain

HomR(P,R) ∼= 0 // R
X· // R

X· // R
X· // · · · .

Thus we compute

Ext1
R(k,R) = H

(
R

X· // R
X· // R

)
= 0,

because of the exactness of the sequence at the relevant position. For the inductive step assume ` ≥ 2. By
Nakayama’s Lemma (Fact IV.A.2.4(d)), N/mN 6= 0 is a finite dimensional vector space over k = A/m,
i.e., N/mN ∼= kt for some t ≥ 1, so we can surject kt � k. Therefore there exists an exact sequence

0 // N ′ // N // k // 0,

which “splits”. Thus we have N ∼= N ′ ⊕ k as a k-vector space, so dimkN
′ = dimkN − 1 and therefore

Ext1
R(N ′, R) = 0 by the inductive hypothesis. Considering the long exact sequence

0 // HomR(k,R) // HomR(N,R) // HomR(N ′, R)

//
���

��Ext1
R(k,R)
=0

//
��

���
�

Ext1
R(N,R)
∴=0

//
���

���Ext1
R(N ′, R)

=0

we conclude as desired. What about the infinite projective dimension? We present two proofs of the
fact that idR k =∞. First, if idR k <∞, then Auslander-Buchsbaum, Serre implies R is a regular local
ring, but edimR = 1 > 0 = dimR, a contradiction. Second, we can show that ExtiR(k, k) 6= 0 for all i.
We know ExtiR(k, k) = Hi(HomR(P, k)) and

HomR(P, k) = 0 // k
=0

X· // k
=0

X· // k
=0

X· // · · · ,

where the multiplication map is the zero map because k = R/ 〈X〉. Thus we have ExtiR(k, k) ∼= k 6= 0
for all i, as desired.

(b) Set R = k[X,Y ]/
〈
X2, XY, Y 2

〉
. Then R is not injective over R and idRR =∞. To justify this it suffices

to show that ExtiR(k,R) 6= 0 for all i ≥ 0. We have the short exact sequence

0 // m // R // k // 0

which can be rewritten as

0 // k2 // R // k // 0,
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because m ∼= k2 as an R-module. We also have a minimal free resolution of k:

· · · // R16 // R8 ∂3(
∂2 0
0 ∂2

) // R4 ∂2(
∂1 0
0 ∂1

) // R2 ∂1

(X Y )
// R // 0.

The long exact sequence

0 // HomR(k,R) // HomR(R,R) // HomR(k2, R)

// Ext1
R(k,R) //

���
���Ext1

R(R,R)
=0

can then be rewritten as

0 // k2 // R //

∼ =

k4 // Ext1
R(k,R) // 0,

k3

since HomR(k,R) ∼= k2 and HomR(k2, R) ∼= k4 (and by Hom-cancellation). Thus the powers in a
resolution of Ext1

R(k,R) are 2, 3, and 4, so we compute

dimk Ext1
R(k,R) = 4− 3 + 2 = 3

and it follows that Ext1
R(k,R) ∼= k3 6= 0. Continuing the long exact sequence from above we have

=0

��
���

�
Ext1

R(R,R) // //// Ext1
R(k2, R)

// Ext2
R(k,R) //

���
���Ext2

R(R,R)
=0

.

Thus the snaking homomorphism om the previous display is an isomorphism and we have

Ext2
R(k,R) ∼= Ext1

R(k2, R) ∼= Ext1
R(k,R)2 ∼= (k3)2 ∼= k6 6= 0.

One can compute similarly

ExtiR(k,R) ∼= Exti−1
R (k2, R) ∼= Exti−1

R (k,R)2

Ext3
R(k,R) ∼= (k6)2

Ext4
R(k,R) ∼= (k12)2,

i.e.,

dimk ExtnR(k,R) = 3 · 2n−1 6= 0

for all n ≥ 1. So R is not injective over R. Nonetheless, one can find a nice injective R-module using a
staircase diagram.

Y

R

I

X

I has two generators (i.e., βR0 (I) = 2 = typeR) corresponding to the two downward-pointing corners
in the interior of Quadrant III, its vector space dimension is three, and it is an injective R-module. In
general, for any monomial ideal that determines an artinian ring R, one can always find an injective
module I whose minimal number of generators is equal to the type of R.

thm201209g Theorem IV.F.2.11. Let A be local or standard graded. Then A is Gorenstein if and only if idA(A) <∞.
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How can we get HomA(−, A) to be nice? One way is to get A to be injective. Another way is if
idA(A) <∞. These conditions are both very restrictive.

ex201209h Example IV.F.2.12. (a) Let R = k[X]/
〈
X2
〉
, so idR(R) = 0. R is Gorenstein (and is Cohen-Macaulay

type 1).
(b) Let R = k[X,Y ]/

〈
X2, XY, Y 2

〉
, so idR(R) =∞. R is not Gorenstein (and is Cohen-Macaulay type 2).

IV.F.3. Dualizing Modules
section063021ag

disc201209i Discussion IV.F.3.1. HomA(−, A) is nice when idA(A) <∞, i.e., when A is Gorenstein. Can we get a
nice duality when A is not Gorenstein? Not generally, but we can if we try to get a nice HomA(−, D).

disc201209j Discussion IV.F.3.2. What properties make HomA(−, D) particularly nice?

(1) We want some form of exactness, either D to be injective or idA(D) <∞.
(2) We want HomA(f.g., D) to be finitely generated. The best way to guarantee that is to let D be finitely

generated. Note these two properties means that D is Cohen-Macaulay.
(3) We want HomA(−, D) to not lose any information.

defn201209k Definition IV.F.3.3. An A-module D is a dualizing A-module if it satisfies the following conditions.

(1) idA(D) <∞.
(2) D is finitely generated.
(3) The natural map

x : A
∼= // HomA(D,D)

r � // [D
r→ D]

is an isomorphism, and ExtiA(D,D) = 0 for all i ≥ 1. We call x the homothety map.

ex201209l.aex201209l Example IV.F.3.4. (a) A is Gorenstein if and only if A is a dualizing module.
(2) A is finitely generated over A.

(3) We have A
∼= // HomA(A,A) and ExtiA(A,A) = 0 because A is projective.

(1) idA(A) <∞ if and only if A is Gorenstein.
ex201209l.b (b) An is a dualizing module if and only if n = 1 and A is Gorenstein. This is because HomA(An, An) ∼=

An
2 ?∼= A, which occurs only when n2 = 1.

ex201209l.c (c) Let R = k[X,Y ]/
〈
X2, XY, Y 2

〉
, which has the following staircase diagram.

Y

R

D

X

Then D is a dualizing R-module.
ex201209l.d (d) If we have any artinian monomial ideal, we can follow a similar process to part (c) to find a dualizing

module. This dualizing module is also often called a canonical module (Grothendieck).

thm201209m Theorem IV.F.3.5. Assume R = S/I. If R is Cohen-Macaulay, then D = ExtpS(R,S) is a dualizing
R-module with p = pdS(R).
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ex201209n Example IV.F.3.6. Consider the following staircase diagram for R.

Y

R

D

X

We can count type(R) = 2 by counting the two corners in Quadrant I of the diagram, and we can count
βR0 (D) = 2 by counting the two corners in Quadrant III of the diagram.

thm201209o Theorem IV.F.3.7 (Grothendieck, Sharp, Foxby, Reiten). (a) Suppose A is local. Then there exists a
dualizing A-module if and only if A is Cohen-Macaulay and A ∼= B/J , where B is Gorenstein.

(b) Suppose A is standard graded. Then there exists a dualizing A-module if and only if A is Cohen-Macaulay.

Sketchy Sketch of Proof. (a) For the reverse direction, let A ∼= B/J satisfying B Gorenstein and
A Cohen-Macaulay. Then ExtiB(A,B) = 0 for all i 6= p, so D = ExtpB(A,B) is a dualizing A-module,
where p = depth(B)− depth(A), because

HomA(HomB(A,B),HomB(A,B)) ∼= HomB(A⊗A (HomB(A,B), B)

∼= HomB(HomB(A,B), B) ≈ A.

For the forward direction, assume D is a dualizing A-module, so D is (non-zero) finitely generated and
idA(D) < ∞. Therefore, A is Cohen-Macaulay. How do we find B? We use a construction of Nagata,
called the idealization or trivial extension. We use

B = AnD = A⊕D

as an A-module using the multiplication map

(a, d)(α, δ) = (aα, aδ + αd).

We need to check that AnD is a non-zero commutative ring with identity, so

A //

1A

�

%%

AnD = B

τ
����
A

and the natural maps are ring homomorphisms. Then A ∼= B/Ker(τ), but ker(τ) ∼= D.
�

cor201209p Corollary IV.F.3.8. R = S/I has a dualizing module if and only if R is Cohen-Macaulay.

cor201209q Corollary IV.F.3.9. If A is local and Cohen-Macualay, then Â has a dualizing module.

IV.F.4. Dualizing Complexes (Grothendieck and Hartshorne)
section063021ah

disc201209r Discussion IV.F.4.1. How do we get a nice duality without assuming Cohen-Macaulayness? We use
the derived category.

defn201209s Definition IV.F.4.2. An A-complex D is a dualizing A-complex if it satisfies the following conditions.

(1) D is homologically finite, i.e., ⊕
i∈Z

Hi(D)

is a finitely generated A-module, i.e., Hi(D) is finitely generated over A for all i and Hi(D) = 0 for all
|i| � 0.

(2) idA(D) < ∞, i.e., there is a semiinjective resolution D
'→ I such that Ij = 0 for all |j| � 0, i.e., D has

a bounded semiinjective resolution.
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(3) The natural map

A
x
∼=
// RHomA(D,D)

is an isomorphism in the derived category, i.e.,

A
x

'
// HomA(I, I)

is a quasiisomorphism.

ex201209t Example IV.F.4.3. Every dualizing module is a dualizing complex. Morevoer, a dualizing module is a
dualizing complex satisfying Hi = 0 for all i 6= 0.

thm201209u Theorem IV.F.4.4. A has a dualizing complex if and only if A ∼= B/J such that B is Gorenstein.

ex201209v Example IV.F.4.5. Let R = k[X,Y ]/
〈
X2, XY

〉
. Then R is not Cohen-Macaulay, but there exists a

dualizing R-complex.

cor201209w Corollary IV.F.4.6. R = S/I has a dualizing complex D = RHomS(R,S).

cor201209x Corollary IV.F.4.7. If A is local, then Â has a dualizing complex.

Outro.

(1) There is a DG version of dualizing complexes.
(2) Some take-away points from this class:

• Some rings are nicer than others.
• Niceness is in the eye of the beholder.
• Combinatorial constructions allow us to see the niceness sometimes.
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-adic

completion, 246

metric, 245

norm, 244

valuation, 244

-adically Cauchy, 245

alternating matrix, 186

annihilator

of a module, 37, 115

of an element, 37, 115

artinian ring, 261

associated prime, 40, 223

minimal, 53

augmented free resolution, 131, 135

augmented injective resolution, 111, 283

augmented projective resolution, 18

Auslander, Buchsbaum, Serre theorem, 25, 127, 252, 284

Auslander-Bridger theorem, 127, 129

Auslander-Buchsbaum, 172, 176, 253

Auslander-Buchsbaum formula, 252

Avramov, 258

Avramov’s hammer, 214

balance for ext, 112

balance for tor, 112

basis for a module, 133

Bass number, 277

Bass series, 277

Betti number, 131, 257

Buchsbaum-Eisenbud, 183, 191

category, 12

contravariant functor, 12

covariant functor, 12

functor, 12

Cayley, 186

chain complex, 141, 268

chain map, 78, 143

isomorphism, 78

mapping cone of, 99, 151

quasiisomorphism, 102, 144

short exact sequence of, 89, 146

codimension, 256

Cohen structure theorem, 247

Cohen-Macaulay ring, 25, 243

type, 277

Cohen-Macaulay type, 277

colon ideal, 161

commutative ladder diagram, see also chain map

complete local ring, 247

complex, 69

boundary, 141

cycle, 141

differential of, 69

dualizing, 287

homology module, 142

homology module of, 69

lower star, 70

shift of, 99, 142

short exact sequence of, 89

suspension of, see also shift of a complex

upper star, 70

complexity of a module, 258

connecting homomorphism, 89, 147

contravariant functor, 12

corner element, 48

corona, see also suspension of a graph

covariant functor, 12

depth, 24, 172, 223

determinantal ideal, 183

DG algebra, 198

morphism of, 213

quasiisomorphism of, 213

DG algebra resolution, 206

DG module, 214

semi-bases for, 215

semi-free, 215

semi-free resolution of, 215

differential, 19, 131

dimension shifting lemma, 123

direct summand, 12, 142

dualizing complex, 287

dualizing module, 286

edge ideal, 229

Eisenbud, 260

embedding dimension, 24, 241

Emmy Noether, 227

equivalence of Cauchy sequences, 246

exact sequence, 10, 134

short, 10

ext, 19, 154

balance for, 112

depth, 66

long exact sequence in, 17, 94, 99

extension of modules, 113

exterior algebra, 206, 209

face

of a simplicial complex, 232

facet

of a simplicial complex, 232

fibre of a ring homomorphism, 272

field of fractions, 14

289



INDEX 290

finite injective dimension, 283

finite projective dimension, 122, 252

finite rank free module, 133

finitely presented module, 32

Fitting ideal, 183

flat module, 272

flat ring homomorphism, 272

formal complete intersection, 254

codimension of, 256

hypersurface, 256

proper hypersurface, 256

free algebra, 206, 209, 210

free resolution, 131

functor, 12

generating sequence

minimal, 56

geometric complete intersection, 254

Gorenstein ring, 129, 281

graded homomorphism, 140

graded ideal, 137

graded prime avoidance, 225

graded ring, 220

multi-graded ring, 222

standard graded ring, 222

graph

independent subset of, 233

maximal subset of, 233

Grothendieck, Sharp, Foxby, Reiten, 287

Gulliksen, 258

Hilbert function, 240

Hilbert polynomial, 240

Hilbert polynomial existence, 240

Hilbert syzygy theorem, 124, 131, 136

graded version, 137

Hilbert-Burch theorem, 184

Hilbert-Samuel function, 241

Hilbert-Samuel polynomial, 241

homogeneous homomorphism, 140

homogeneous ideal, 137

homology module of a complex, 142

homomorphism

graded, 140

homogeneous, 140

of short exact sequences, 11

homothety map, 115, 286

horseshoe lemma, 96

hypersurface, 256

ideal

colon, 161

corner element, 48

edge ideal, 229

graded, 137

homogeneous, 137

irreducible, 226

irreducible decomposition of, 227

irredundant irreducible decomposition of, 227

minimal associated prime, 53

parameter ideal, 235

primary, 242

radical of, 36

Stanley-Reisner, 232

variety of, 36

independence complex, 233

independent subset of a graph, 233

injective dimension, 283

injective module, 13

irreducible decomposition, 227

irredundant, 227

irreducible ideal, 226

irredundant irreducible decomposition, 227

irredundant list of monomials, 228

isomorphism

of short exact sequences, 11

Koszul complex, 100, 116, 131, 163

basis vectors, 201

depth-sensitivity of, 172

rigidity of, 176

self-duality of, 166, 170

Krull, 238

Krull dimension, 24, 237

Krull’s intersection theorem, 244

lifting lemma, 159

local cohomology module, 113

local ring, 55, 219

complete, 247

embedding dimension of, 241

Hilbert-Samuel function, 241

Hilbert-Samuel multiplicity, 241

Hilbert-Samuel polynomial, 241

quasilocal ring, 219

regular, 127, 241

regular system of parameters, 250

system of parameters, 242

local ring homomorphism, 272

lower star, 17

lower star on complex, 70

LR(x), 167

mapping cone, 151

of a chain map, 99

matrix

alternating, 186

factorization, 259

minor, 182

pfaffian, 190

subdeterminant, 182

matrix factorization, 259

maximal regular sequence, 24, 61, 223

maximal subset of a graph, 233

minimal associated prime ideal, 53

minimal generating seequence, 56

mixed monomial ideal, 236

module

annihilator, 37

associated prime, 40

basis, 133

complexity of, 258

direct summand, 12

dualizing, 286

embedding dimension, 24

extension of, 113

finite injective dimension, 283

finite projective dimension, 252

finite rank free, 133

finitely presented, 32

flat, 272

injective, 13

injective dimension, 283

local cohomology, 113
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maximal regular sequence, 24

noetherian, 74

non-zero-divisor, 24

Poincaré series, 259

projective, 12

projective dimension, 252

regular element, 24

regular sequence, 24

support, 37

totally reflexive, 126

monomial, 48

irredundant list, 228

redundant list, 228

square-free, 228

monomial ideal, 48, 177

mixed, 236

square-free, 228

unmixed, 236

morphism

of DG algebras, 213

multiplicatively closed subset, 13

equivalence classes, 14

Nakayama’s Lemma, 55

natural complete intersection, 254

noetherian module, 74

noetherian ring, 74, 134

non-zero-divisor, 24

parameter ideal, 235

pfaffian, 190

Poincaré series, 259

polynomial algebra, 209, 210

primary ideal, 242

prime avoidance, 53, 224

graded, 225

prime spectrum, 36

projective dimension, 122, 252

projective module, 12

proper hypersurface, 256

pure simplicial complex, 237

quasi-local ring, 55

quasiisomorphism, 102, 144

of DG algebras, 213

quasilocal ring, 219

radical, 36

reducible ideal, 226

redundant list of monomials, 228

Rees, 172

regular element, 24, 60

regular local ring, 127, 241

regular ring, 25

regular sequence, 24, 60, 223

maximal, 61, 223

weakly, 165

resolution

augmented free, 131, 135

augmented injective, 111, 283

augmented projective, 18

DG algebra, 206

differential, 19

free, 131

truncated injective, 111, 283

truncated projective, 18

ring

artinian, 261

Cohen-Macaulay, 25, 243

Gorenstein, 129, 281

Krull dimension, 24

noetherian, 74, 134

prime spectrum, 36

regular, 25

unmixed, 265

ring homomorphism

fibre, 272

flat, 272

local, 272

Samuel, 241

Samuel theorem, 241

Schanuel’s lemma, 105

semi-basis for a DG module, 215

semi-free DG module, 215

semi-free resolution of a DG module, 215

shift

of a complex, 99, 142

short exact sequence, 10, 134

homomorphism of, 11

isomorphism of, 11

of chain maps, 89, 146

of complexes, 89

split, 11

split extension, 11

splitting homomorphism, 12

simplex, 232

simplicial complex, 232

face, 232

facet, 232

pure, 237

snake lemma, 92, 146

split short exact sequence, 11

extension, 11

splitting generators, 228

splitting homomorphism of short exact sequences, 12

square-free monomial, 228

square-free monomial ideal, 228

standard graded ring, 222

degree, 240

Hilbert function, 240

Hilbert polynomial, 240

multiplicity, 240

system of parameters, 242

Stanley-Reisner ideal, 232

support of a module, 37

suspension

of a complex, see also shift of a complex

of a graph, 231

system of parameters, 242

regular, 250

syzygy, 124

Taylor resolution, 177

tor, 154, 215

balance for, 112

totally reflexive module, 126

truncated injective resolution, 111, 283

truncated projective resolution, 18

universal mapping property, 14, 133

unmixed monomial ideal, 236

unmixed ring, 265

upper star, 17

upper star on complex, 70
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variety, 36
vertex cover, 230

minimal, 230

weakly regular sequence, 165

Yoneda, 113


	Part I.  Preface
	Part II.  Homological Algebra
	Chapter II.A. Preliminaries
	II.A.1. Exact Sequences and Projective Modules
	II.A.2. Localization

	Chapter II.B. Motivating Ext
	II.B.1. Application 1: Long Exact Sequence
	II.B.2. Application 2: Depth
	II.B.3. Application 3: Localization Problem for Regular Local Rings
	Exercises

	Chapter II.C. Depth by Ext
	II.C.1. Hom and Direct Sums of Modules
	II.C.2. Modules and Prime Spectra
	II.C.3. Prime Filtrations
	II.C.4. Prime Avoidance and Nakayama's Lemma
	II.C.5. Regular Sequences and Ext
	Exercises

	Chapter II.D. Homology
	II.D.1. Chain Complexes and Homology
	II.D.2. Ext Modules
	Exercises

	Chapter II.E. Chain Maps and Induced Maps on Ext
	II.E.1. Chain Maps
	II.E.2. Liftings and Resolutions
	Exercises

	Chapter II.F. Long Exact Sequences
	II.F.1. The Mother of All Long Exact Sequences
	II.F.2. The First Long Exact Sequence in Ext
	II.F.3. The Horseshoe Lemma and Second Long Exact Sequence in Ext
	II.F.4. Mapping Cones
	II.F.5. Well-Definedness of Ext
	Exercises

	Chapter II.G. Additional Topics
	II.G.1. Other Derived Functors
	II.G.2. Ext and Extensions
	II.G.3. The Koszul Complex
	II.G.4. Additional Discussions on Ext


	Part III.  Free Resolutions
	Introduction
	Chapter III.A. Homological Algebra
	III.A.1. Linear Algebra
	III.A.2. Exact Sequences
	III.A.3. Graded Resolutions
	III.A.4. Chain Complexes
	III.A.5. Application: Long Exact Sequences in Ext and Tor
	Exercises

	Chapter III.B. Examples of Free Resolutions
	III.B.1. Resolutions of Mapping Cones
	III.B.2. The Koszul Complex
	III.B.3. Application: Depth Sensitivity of the Koszul Complex
	III.B.4. The Taylor Resolution
	III.B.5. A Colloquial Presentation of Two Resolutions
	Exercises

	Chapter III.C. Differential Graded Algebra Resolutions
	III.C.1. Definitions, Properties, and Examples
	III.C.2. General Construction of DG Algebra Resolutions
	III.C.3. Applications
	Exercises


	Part IV.  Homological Properties of Rings
	Chapter IV.A. Introduction
	IV.A.1. Niceness
	IV.A.2. Local Rings
	IV.A.3. Graded Rings
	IV.A.4. Depth
	IV.A.5. Monomial Ideals
	IV.A.6. Krull Dimension
	IV.A.7. Completions
	Exercises

	Chapter IV.B. Regular Rings
	IV.B.1. Foundational Properties
	IV.B.2. Homological Properties
	Exercises

	Chapter IV.C. Complete Intersection Rings
	IV.C.1. Foundational Properties
	IV.C.2. Homological Properties
	Exercises

	Chapter IV.D. Artinian Rings
	IV.D.1. Foundational Properties
	IV.D.2. Structural Properties
	Exercises

	Chapter IV.E. Cohen-Macaulay Rings
	IV.E.1. Foundational Properties
	IV.E.2. Homological Properties
	IV.E.3. The Type of a Cohen-Macaulay Ring
	Exercises

	Chapter IV.F. Gorenstein Rings
	IV.F.1. Foundational Properties
	IV.F.2. Homological Properties
	IV.F.3. Dualizing Modules
	IV.F.4. Dualizing Complexes (Grothendieck and Hartshorne)

	Index


