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MULTIPLICITIES OF SEMIDUALIZING MODULES

Susan M. Cooper1 and Sean Sather-Wagstaff2
1Department of Mathematics, Michigan, Central Michigan University,
Mount Pleasant, Michigan, USA
2Department of Mathematics, North Dakota State University, Fargo,
North Dakota, USA

A finitely generated module C over a commutative noetherian ring R is semidualizing if
HomR�C�C� � R and ExtiR�C�C� = 0 for all i � 1. For certain local Cohen–Macaulay
rings �R���, we verify the equality of Hilbert-Samuel multiplicities eR�J�C� =
eR�J�R� for all semidualizing R-modules C and all �-primary ideals J . The classes
of rings we investigate include those that are determined by ideals defining fat point
schemes in projective space or by monomial ideals.

Key Words: Betti numbers; Canonical modules; Dualizing modules; Monomial ideals; Fat point
schemes; Hilbert-Samuel multiplicities; Semidualizing modules.

2010 Mathematics Subject Classification: 13C14; 13H15.

1. INTRODUCTION

In this section, let �R��� k� be a Cohen–Macaulay local ring with a dualizing
module D. A finitely generated R-module C is semidualizing if HomR�C�C� � R
and ExtiR�C� C� = 0 for all i � 1. Thus, the module D is precisely a semidualizing
module of finite injective dimension. Let �0�R� denote the set of isomorphism
classes of semidualizing R-modules. (See Section 2 for definitions and background
information.) For example, the R-modules R and D are semidualizing. The ring R
is Gorenstein if and only if D � R, equivalently, if and only if �0�R� = ��R��.

In this article, we investigate the following question, motivated by the well-
known equality eR�J�D� = eR�J� R�.

Question 1.1. Let C be a semidualzing R-module. For each �-primary ideal J ,
must we have an equality of Hilbert-Samuel multiplicities eR�J� C� = eR�J� R�?

When R is generically Gorenstein (e.g., reduced) an affirmative answer to this
question is contained in [10, (2.8(a))]. In Theorems 3.2 and 3.4, we address a few
more cases with the following theorem.
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4550 COOPER AND SATHER-WAGSTAFF

Theorem 1.2. Assume that R satisfies one of the following conditions:

(1) P2RP = 0 for each P ∈ Ass�R�;
(2) R̂ � k��X0� X1� 	 	 	 � Xn��/Ik��X0� X1� 	 	 	 � Xn��, where I ⊆ k�X0� X1� 	 	 	 � Xn� is the

ideal determining a fat point scheme in �n
k; or

(3) R̂ � k��X1� 	 	 	 � Xn��/I , where I is generated by monomials in the Xi.

For every �-primary ideal J ⊂ R and every semidualizing R-module C, we have
eR�J� C� = eR�J� R�.

This article is organized as follows. Section 2 consists of background material,
and Section 3 contains the proof of Theorem 1.2.

2. BACKGROUND

For the rest of this article, let R and S be commutative noetherian rings of
finite Krull dimension.

Definition 2.1. Let C be an R-module. The natural homothety map


RC � R → HomR�C�C�

is the R-module homomorphism given by 
RC�r��c� = rc. The module C is
semidualzing if it satisfies the following statements:

(1) C is finitely generated;
(2) The homothety map 
RC � R → HomR�C�C� is an isomorphism; and
(3) ExtiR�C� C� = 0 for all i > 0.

The module C is dualizing if it is semidualizing and has finite injective dimension.1

Example 2.2. It is straightforward to show that the free R-module R1 is
semidualizing. It is dualizing if and only if R is Gorenstein.

The following facts will be used in the sequel.

Fact 2.3. Let C be a semidualizing R-module. Then a sequence x1� 	 	 	 � xn ∈ R is
C-regular if and only if it is R-regular. (See, e.g., [11, (1.4)] for a brief explanation
of the local case. The general case has the same proof.)

Fact 2.4. Assume that R is Cohen–Macaulay and that D is a dualizing R-module.
Let C be a semidualizing R-module. From [3, (3.1), (3.4)] and [6, (V.2.1)], we have
the following:

(a) ExtiR�C�D� = 0 for all i � 1;

1The assumption dim�R� < � guarantees that a finitely generated R-module C has finite
injective dimension over R if and only if C� has finite injective dimension over R�. For instance, this
removes the need to worry about any distinction between the terms “dualizing” and “locally dualizing,”
and similarly for “Gorenstein” and “locally Gorenstein.” This causes no loss of generality in this article
as we are primarily concerned with local and graded situations.
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MULTIPLICITIES OF SEMIDUALIZING MODULES 4551

(b) The dual HomR�C�D� is a semidualizing R-module;
(c) The natural biduality map �DC � C → �HomRHomR�C�D�D� given by the

formula �DC�c��
� = 
�c� is an isomorphism;
(d) TorRi �C�HomR�C�D�� = 0 for all i � 1; and
(e) The natural evaluation map C ⊗R HomR�C�D� → D given by c ⊗ 
 �→ 
�c� is

an isomorphism.

From (c), we conclude that:

(f) if HomR�C�D� � R, then C � D.
Assume that R is local. Because of (d) and (e), the minimal free resolution of D
is obtained by tensoring the minimal free resolutions of C and HomR�C�D�. In
particular, this implies that:

(g) �R
i �D� = ∑i

j=0 �
R
j �C��

R
i−j�HomR�C�D�� for each i � 0.

Fact 2.5. Let � � R → S be a homomorphism of commutative noetherian rings.
Assume that S has finite flat dimension as an R-module. For example, this is satisfied
when S is flat as an R-module, or when � is surjective with Ker��� generated by an
R-regular sequence. If C is a semidualizing R-module, then S ⊗R C is a semidualizing
S-module; the converse holds when � is faithfully flat; see [3, (4.5)]. Thus, the rule
of assignment �C� �→ �S ⊗R C� describes a well-defined function �0��� � �0�R� →
�0�S�. If the map � is local, that is if �R��� and �S��� are local and ���� ⊆ �,
then the induced map �0��� is injective; see [3, (4.9)].

Assume that � is local and satisfies one of the following conditions:

(1) � is flat with Gorenstein closed fibre S/�S (e.g., � is the natural map from R to
its completion R̂); or

(2) � is surjective with Ker��� generated by an R-regular sequence.

Then a semidualizing R-module C is dualizing for R if and only if S ⊗R C is dualizing
for S by [1, (3.1.15),(3.3.14)]. When R is complete and � satisfies condition (2), the
induced map �0��� � �0�R� → �0�S� is bijective; see [4, (4.2)] or [5, (2)].

Fact 2.6. Assume that �R��� k� is local and C is a semidualizing R-module. If C
has finite projective dimension, then C � R; see, e.g., [11, (1.14)]. If R is Gorenstein,
then C � R by [2, (8.6)]. If �2 = 0, then either C � R or C is dualizing for R.
(Indeed, if C � R, then the first syzygy C ′ of C is a nonzero k-vector space such that
Ext1R�C

′� C� = 0, so C is injective.)

The following notions are standard.

Remark/Definition 2.7. Let �R��� be a local ring, and let I be an �-primary
ideal of R. Let C be a finitely generated R-module of dimension d. There
is a polynomial HI�C�j� ∈ ��j� such that HI�C�j� = lenR�I

jC/Ij+1C� for j 
 0.
Moreover, the degree of HI�C�j� is d − 1, and the leading coefficient is of the
form eR�I� C�/�d − 1� for some positive integer eR�I� C�. The integer eR�I� C� is the
Hilbert–Samuel multiplicity of C with respect to I .

The next lemma is a version of a result of Herzog [8, (2.3)]. It is proved
similarly and is almost certainly well-known.
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4552 COOPER AND SATHER-WAGSTAFF

Lemma 2.8. Let � � �R��� → �S��� be a flat local ring homomorphism such that
�S = �. Let I be an �-primary ideal of R, and let C be a finitely generated R-
module. Set C̃ = S ⊗R C and Ĩ = IS. For each j there is an equality lenS�̃I

jC̃/̃Ij+1C̃� =
lenR�I

jC/Ij+1C�. In particular, we have eS�̃I� C̃� = eR�I� C�.

We end this section with a discussion of fat point schemes.

Definition 2.9. Let k be a field. Fix distinct points Q1� 	 	 	 � Qr ∈ �n
k and integers

m1� 	 	 	 � mr � 1. Set S0 = k�X0� X1� 	 	 	 � Xn� with irrelevant maximal ideal �0 =
�X0� X1� 	 	 	 � Xn�S0. For each index j, let I�Qj� ⊂ S0 be the (reduced) vanishing ideal
of Qj . The subscheme of �n

k defined by the ideal I = ∩r
j=1I�Qj�

mj ⊆ S0 is the fat point
scheme determined by the points Q1� 	 	 	 � Qr with multiplicities m1� 	 	 	 � mr .

Remark 2.10. Continue with the notation of Definition 2.9.
Set S = k��X0� X1� 	 	 	 � Xn�� with maximal ideal � = �X0� X1� 	 	 	 � Xn�S. The

local rings �S0��0
/I�0

and R = S/IS are Cohen–Macaulay of dimension 1.
Note that the quotient S0/I�Qj� is isomorphic (as a graded k-algebra)

to a polynomial ring k�Y�. In particular, the completion of the local ring
�S0��0

/I�Qj��S0��0
(isomorphic to S/I�Qj�S) is isomorphic to the formal power series

ring k��Y��. In particular, the ideal I�Qj�S is prime. It follows that the associated
primes of R = S/I are of the form Pj = I�Qj�S/I . Localizing at one of these primes
yields

RPj
� SI�Qj�

/ISI�Qj�
� SI�Qj�

/I�Qj�
mjSI�Qj�

� SI�Qj�
/�I�Qj�SI�Qj�

�mj 	

In other words, we have RPj
� Sj/�

mj

j for some regular local ring �Sj��j�.

3. MULTIPLICITIES OF SEMIDUALIZING MODULES

In this section, we consider Question 1.1 for certain classes of rings.

Lemma 3.1. Let �S��� be a regular local ring containing a field. Let e be a positive
integer, and set R = S/�e. Let C be a semidualizing R-module. Then either C � R or
C is dualizing for R. In particular, we have lenR�C� = lenR�R�.

Proof. Fact 2.6 deals with the case e = 1, so assume that e � 2. The ring R is
artinian and local. Hence, it is complete and has a dualizing module D. There are
isomorphisms

R � R̂ � Ŝ/�eŜ � k��X1� 	 	 	 � Xn��/�X1� 	 	 	 � Xn�
e

where k is a field and n = edim�S�. We now conclude from [10, (4.11)] that C � R
or C � D. The conclusion lenR�C� = lenR�R� follows from the well-known equality
lenR�D� = lenR�R�. �

The next result contains cases (1) and (2) of Theorem 1.2 from the
introduction.
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MULTIPLICITIES OF SEMIDUALIZING MODULES 4553

Theorem 3.2. Let �R��� be a local Cohen-Macaulay ring, and let C be a
semidualizing R-module. Assume that R satisfies one of the following conditions:

(1) P2RP = 0 for each P ∈ Ass�R�;
(2) R̂ � k��X0� X1� 	 	 	 � Xn��/Ik��X0� X1� 	 	 	 � Xn�� where I ⊆ k�X0� X1� 	 	 	 � Xn� is the

ideal determining a fat point scheme in �n
k .

Then for every �-primary ideal J ⊂ R, we have eR�J� C� = eR�J� R�.

Proof. (1) Assume that P2RP = 0 for each P ∈ Ass�R�. Fact 2.6 implies that
lenRP

�CP� = lenRP
�RP� for each P ∈ Ass�R�, hence the second equality in the

following sequence wherein each sum is taken over all P ∈ Ass�R�:

e�J� C� = ∑
P

lenRP
�CP�e�J� R/P� =

∑
P

lenRP
�RP�e�J� R/P� = e�J� R�	

The remaining equalities follow from the additivity formula [1, (4.7.t)].

(2) Using Fact 2.5 and Lemma 2.8 we may pass to the completion to assume
that R � R̂. For each P ∈ Ass�R�, Remark 2.10 implies that RP � S/�m for some
regular local ring �S���. Lemma 3.1 implies that lenRP

�CP� = lenRP
�RP� for each P ∈

Ass�R�, hence the desired conclusion follows as in case (1). �

The next result contains part of case (3) of Theorem 1.2 from the introduction.
The general case is in Theorem 3.4.

Lemma 3.3. Let �A� �� be a complete reduced local ring, and set S = A��x1� 	 	 	 � xn��,
the formal power series ring, with maximal ideal � = ��� x1� 	 	 	 � xn�S. Let I ⊂ S be
an ideal generated by monomials in the xi, and set R = S/I with maximal ideal � =
�/I . Assume that R is Cohen–Macaulay, and let C be a semidualizing R-module. Then
for each P ∈ Spec�R� and for each PRP-primary ideal J ⊂ RP , we have eRP

�J� CP� =
eRP

�J� RP�.

Proof. Here is an outline of the proof. We show that the theory of polarization
for monomial ideals yields a complete reduced Cohen–Macaulay local ring R∗ and
a surjection � � R∗ → R such that Ker��� is generated by an R∗-regular sequence y.
Facts 2.3 and 2.5 yield a semidualizing R∗-module such that the sequence y is
C∗-regular and C∗/�y�C∗ � C. Because R∗ is complete and reduced, the desired
conclusion follows from [10, (2.8.b)].

Set S0 = A�x1� 	 	 	 � xn� ⊂ S. The ideal I0 = I ∩ S0 is generated by monomials in
the xi, in fact, by the same list of monomial generators used to generate I .

The theory of polarization for monomial ideals yields the following:

(1) A polynomial ring S∗
0 = A�x1�1� 	 	 	 � x1�t1� x2�1� 	 	 	 � x2�t2� 	 	 	 � xn�1� 	 	 	 � xn�tn � with

irrelevant maximal ideal �∗
0 = ��� �xi�j��S

∗
0 ;

(2) An ideal I∗0 ⊆ S∗
0 generated by square-free monomials in the xi�j ;

(3) A sequence y = y1� 	 	 	 � yr ∈ �∗
0 that is both S∗

0 -regular and �S∗
0/I

∗
0 �-regular and

such that S∗
0/�y�S

∗
0 � S0 and S∗

0/�I
∗
0 + �y�S∗

0� � S0/I0.
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4554 COOPER AND SATHER-WAGSTAFF

Localizing at �∗
0 and passing to the completion yields the following:

(1′) A power series ring S∗ = A��x1�1� 	 	 	 � x1�t1� x2�1� 	 	 	 � x2�t2� 	 	 	 � xn�1� 	 	 	 � xn�tn �� over
k with maximal ideal denoted �∗ = ��� �xi�j��S

∗;
(2′) An ideal I∗ = I∗0S

∗ ⊆ S∗ generated by square-free monomials in the xi�j ;
(3′) A sequence y = y1� 	 	 	 � yr ∈ �∗ that is both S∗-regular and �S∗/I∗�-regular and

such that S∗/�y�S∗ � S and S∗/�I∗ + �y�S∗� � S/I = R.

Setting R∗ = S∗/I∗, we have the following:

(1′′) Since I∗ is generated by square-free monomials, the ring R∗ is reduced;
(2′′) The sequence y is R∗-regular such that R∗/�y�R∗ � R. In particular, since R is

Cohen-Macaulay, so is R∗;
(3′′) Since S∗ is complete, so is R∗; Thus, Fact 2.5 provides a semidualizing R∗-

module C∗ such that C � C∗ ⊗R∗ R;
(4′′) Since the sequence y is R∗-regular, it is also C∗-regular by Fact 2.3.

Let � � R∗ → R be the canonical surjection, and set P∗ = �−1�P�. We then have the
following:

(1′′′) Since R∗ is reduced, so is the localization R∗
P∗ ;

(2′′′) Since R∗ is Cohen-Macaulay, so is the localization R∗
P∗ . In particular, the ring

R∗
P∗ is equidimensional. Also, we have R∗

P∗/�y�R∗
P∗ � RP ;

(3′′′) Since R∗ is complete, it is excellent, and it follows that the localization
R∗

P∗ is also excellent. In particular, for every � ∈ Min�R∗
P∗� the ring

�R∗
P∗��/��R

∗
P∗�� ⊗R∗

P∗
R̂∗

P∗ is Gorenstein;
(4′′′) The R∗

P∗ -module C∗
P∗ is semidualizing and satisfies C∗

P∗/�y�C∗
P∗ � CP .

Using the conditions (1′′′)—(4′′′), the conclusion eRP
�J� CP� = eRP

�J� RP� now follows
from [10, (2.8.b)]. �

The next result contains case (3) of Theorem 1.2 from the introduction. In
preparation, recall that a prime ideal P in a local ring R is analytically unramified
if the completion R̂/P is reduced. For example, if R is excellent, then every prime
ideal of R is analytically unramified.

Theorem 3.4. Let �A� �� be a complete reduced local ring, and S = A��x1� 	 	 	 � xn��
the formal power series ring, with maximal ideal � = ��� x1� 	 	 	 � xn�S. Let I ⊂ S be an
ideal generated by monomials in the xi. Let R be a local Cohen–Macaulay ring such
that R̂ � S/I , and let C be a semidualizing R-module.

(a) Let P ∈ Spec�R� be analytically unramified. Then for every PRP-primary ideal J ⊂
RP , we have eRP

�J� CP� = eRP
�J� RP�.

(b) For every �-primary ideal J ⊂ R, we have eR�J� C� = eR�J� R�.

Proof. (a) Since the natural map R → R̂ is flat and local, there is a prime P̃ ∈
Spec�R̂� such that P = P̃ ∩ R and that the induced map RP → R̂P̃ is flat and local.

The RP-module CP is semidualizing. Furthermore, by flat base-change, the
R̂P̃-module R̂P̃ ⊗RP

CP is semidualizing. The fact that P is analytically unramified
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MULTIPLICITIES OF SEMIDUALIZING MODULES 4555

implies that the maximal ideal of RP extends to the maximal ideal of R̂P̃ . Hence,
Lemma 2.8 yields the first and third equalities in the following sequence:

eRP
�J� CP� = e

R̂P̃

�JR̂P̃� R̂P̃ ⊗RP
CP� = e

R̂P̃

�JR̂P̃� R̂P̃� = eRP
�J� RP�	

The second equality is from Lemma 3.3.

(b) Since R/� is a field, it is complete. Hence, the prime ideal � is
analytically unramified, so the desired conclusion follows from part (a). �

Corollary 3.5. Let �S��� be a regular local ring containing a field, and let x =
x1� 	 	 	 � xn be a regular system of parameters for S. Let I ⊂ S be an ideal generated by
monomials in the xi, and set R = S/I with maximal ideal � = �/I . Assume that R is
Cohen-Macaulay, and let C be a semidualizing R-module. For every P ∈ Ass�R�, we
have lenRP

�CP� = lenRP
�RP�.

Proof. Since R is Cohen–Macaulay, we have P ∈ Min�R�. This explains the first
and third equalities in the next sequence:

lenRP
�CP� = eRP

�PRP� CP� = eRP
�PRP� RP� = lenRP

�RP�	

For the second equality, it suffices to show that P is analytically unramified; then
the equality follows from Theorem 3.4(a).

Since I is generated by monomials in the xi, the associated prime P has the
form P = �xi1� 	 	 	 � xij �R. This is, of course, standard when S is a polynomial ring.
Since S is not a polynomial ring, we justify this statement. First note that each ideal
�xi1� 	 	 	 � xij �R is prime because the sequence x is a regular system of parameters.
Since R = S/I is Cohen–Macaulay, the prime P is minimal in Spec�R�. Let � � S →
R be the canonical surjection, and set Q = �−1�P�. The prime Q is a minimal prime
for any primary decomposition of I , and it follows that Q is a minimal prime for
any primary decomposition of the radical

√
I .

Because the sequence x is regular and contained in the Jacobson radical of S,
a result of Heinzer, Mirbagheri, Ratliff, and Shah [7, (4.10)] implies that there are
non-negative integers u� e1�1� 	 	 	 � e1�n� e2�1� 	 	 	 � e2�n� 	 	 	 � eu�1� 	 	 	 � eu�n such that

I = ∩u
s=1�x

es�1
1 � 	 	 	 � x

es�n
n �S	

Since each ideal �xi1� 	 	 	 � xij �S is prime, it is straightforward to show that one has√
�x

es�1
1 � 	 	 	 � x

es�n
n �S = �xi1� 	 	 	 � xij �S and hence

√
I = ∩u

s=1�x
�s�1
1 � 	 	 	 � x

�s�n
n �S (3.5.1)

where

�s�i =
{
0 if es�i = 0

1 if es�i �= 0	
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4556 COOPER AND SATHER-WAGSTAFF

Since each �x
�s�1
1 � 	 	 	 � x

�s�n
n �S is prime, the intersection (3.5.1) is a primary

decomposition. It follows that P = �x
�s�1
1 � 	 	 	 � x

�s�n
n �S for some index s, so P has the

desired form.
It follows that R/P � S/�xi1� 	 	 	 � xij �S is a regular local ring. Thus, the

completion R̂/P is also a regular local ring. In particular, the ring R̂/P is an integral
domain, so it is reduced, and P is analytically unramified by definition. �

We conclude with three results relating lengths and multiplicities to Betti
numbers of semidualizing modules, starting with a general result for modules of
infinite projective dimension.

Lemma 3.6. Let R be a local ring such that Ass�R� = Min�R�. Let C be a finitely
generated R-module of infinite projective dimension, and consider an exact sequence

Ra1
�→ Ra0 → C → 0	

Assume that for each P ∈ Ass�R� one has lenRP
�CP� � lenRP

�RP�. Then a1 � a0.

Proof. Suppose that a1 < a0, that is, that a1 − a0 + 1 � 0. Set K = Ker���, and
consider the exact sequence

0 → K → Ra1
�→ Ra0 → C → 0	

Localize this sequence at an arbitrary P ∈ Ass�R�, and count lengths to find that

0 � lenRP
�KP� � �a1 − a0 + 1�lenRP

�RP� � 0	

It follows that KP = 0 for all P ∈ Ass�R�.
Set L = Im��� and localize the exact sequence

0 → K → Ra1
�→ L → 0

to conclude that LP � R
a1
P for each P ∈ Ass�R�. That is, the R-module L has rank a1.

Hence, we have the third step in the next sequence:

a1 � �R�L� � rankR�L� = a1	

The first step is from the surjection �. It follows that �R�L� = rankR�L�, hence we
conclude that L is free; see, e.g., [12, (1.12)]. The exact sequence

0 → L → Ra0 → C → 0

implies that pdR�C� is finite, a contradiction. So, we have a1 � a0, as desired. �

Theorem 3.7. Let �R��� be a local ring such that Ass�R� = Min�R�. Let C be a
semidualizing R-module such that C �� R, and consider an exact sequence

Ra1
�→ Ra0 → C → 0	
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For each P ∈ Ass�R�, assume that one of the following conditions holds:

(1) RP is Gorenstein;
(2) P2RP = 0;
(3) RP � S/�e for some regular local ring �S��� containing a field and some integer

e � 1; or
(4) RP is isomorphic to a localization of a Cohen–Macaulay ring of the form S/I where

S is a regular local ring containing a field with x1� 	 	 	 � xn ∈ S a regular system of
parameters for S such that I is generated by monomials in the xi.

Then lenRP
�CP� = lenRP

�RP� for each P ∈ Ass�R�. It follows that a1 � a0 and that
e�J� C� = e�J� R� for each �-primary ideal J .

Proof. We first show that lenRP
�CP� = lenRP

�RP� for each P ∈ Ass�R�. If P satisfies
condition (1) or (2), this is a consequence of Fact 2.6. Under conditions (3) and (4),
we apply Lemma 3.1 and Corollary 3.5, respectively.

Now, the conclusion a1 � a0 follows from Lemma 3.6, since Fact 2.6 implies
that pdR�C� = �. The equality e�J� C� = e�J� R� for each �-primary ideal J follows
from the additivity formula as in the proof of Theorem 3.2. �

The next result shows how the existence of a nontrivial semidualizing module
yields an affirmative answer to [9, (2.6)].

Corollary 3.8. Let R be a Cohen–Macaulay local ring with a dualizing module D. Let
C be a semidualizing R-module such that D �� C �� R. If for each P ∈ Ass�R� one of
the conditions (1)–(4) from Theorem 3.7 holds, then �R

1 �D� � 2�R
0 �D�.

Proof. Set C† = HomR�C�D�. The condition D �� C implies that C† �� R by
Fact 2.4(f). Hence, Theorem 3.7 implies that �R

1 �C
†� � �R

0 �C
†� and �R

1 �C� � �R
0 �C�.

This explains the second step in the next sequence:

�R
1 �D� = �R

1 �C��
R
0 �C

†�+ �R
0 �C��

R
1 �C

†� � 2�R
0 �C��

R
0 �C

†� = 2�R
0 �D�	

The first and third steps follow from Fact 2.4(g). �
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